自然语言处理:当前方法与挑战
自然语言处理(NLP)致力于开发理解和运用人类语言的模型、系统和算法。随着深度学习的发展,NLP取得了显著进步,但也面临着一系列挑战。本文将深入探讨NLP的核心任务、评估方法、当前技术以及面临的挑战与趋势。
1. 自然语言处理任务分类
NLP任务可分为核心任务和实际任务。核心任务是处理人类语言的基础,如语言建模、语义分析和解析;实际任务则用于特定目的,如机器翻译、文档摘要和对话系统,且通常依赖多个核心任务。以下是一些常见的NLP任务分类:
- Token分类 :为序列中的每个Token分配一个标签。
- 问答(QA) :系统根据输入的上下文文本和问题,生成正确答案。传统QA任务中,答案可从上下文中提取,系统为上下文中的Token输出标签以确定是否提取。该任务可应用于在线客户支持、搜索引擎和FAQ机器人等。
- 词性标注(POS Tagging) :为输入序列中的每个Token分配一个词性标签,如形容词、动词、名词等。此任务是许多高级应用的基础,如问答、命名实体识别和情感分析。
- 共指消解 :识别文本中指向同一实体的表达式,例如确定代词所指的实体。该任务需要一定的世界知识,对对话系统的连贯性至关重要。
- 命名实体识别(NER) :识别并分类文本中的命名实体,如人名、地点和艺术品等。掌握NER是开发具有上下文理解能力的高级AI模型的关键。
- 序列分类 :为输入序列分配标签。
超级会员免费看
订阅专栏 解锁全文

被折叠的 条评论
为什么被折叠?



