一、常见的综合评价模型
二、AHP方法的优缺点
AHP(Analytic Hierarchy Process)方法是一种用于多准则决策的定量分析方法。其优点和缺点如下所示:
优点:
(1)结构化分析:AHP方法通过将问题分解为层次结构,使得复杂的决策问题可更容易理解和分析。
(2)主观因素的处理:AHP方法允许决策者考虑主观因素,并通过比较不同因素的重要性来进行决策。
(3)灵活性:AHP方法适用于各种类型的决策问题,包括选择、排序和评估等。
一致性检验:AHP方法提供了一种一致性检验的方式,帮助决策者评估其决策是否合理。
缺点:
(1)主观性:AHP方法对决策者的主观判断和比较敏感,不同决策者可能会给出不同的结果。
(2)数据要求:AHP方法需要大量的准则和评价数据,而获取准确的数据可能会很困难。
(3)一致性检验的主观性:AHP方法中的一致性检验虽然可以帮助评估决策的合理性,但其本身也存在一定的主观性。
(4)复杂性:AHP方法在处理大规模的决策问题时可能会变得复杂,需要较高的计算和分析能力。
(5)有主观性,结果比较粗超,难以为众人所接受
需要注意的是,AHP方法是一种有争议的方法,其应用时需要权衡以上优缺点,并结合具体问题进行判断。
三、关于AHP方法的思考讨论
(1)Consistency ratio is an expression of transitivity in the ordering of the alternatives and criteria. In traditional approach to rationality the order of preference must be transitive. AHP (as well as the vast majority of the Multicriteria Decision-Making Methods - MCDM) was designed to use supported in expert knowledge, then it is natural that expert knowledge shows itself as rational (in transitive ordering terms).
Then one cause of high consistency ratios could be lack of expertise in you pretest sampling. That condition could be linked with a sample of respondent with lack of knowledge or by dealing with a very new or complex problem in which not enough experience has been developed so far.
一致性比率是在备选方案和标准的排序中传递性的一种表达。在传统的理性方法中,偏好的顺序必须是可传递的。AHP(以及绝大多数的多准则决策方法-MDM)被设计为使用支持的专家知识,那么专家知识自然会表现出理性(在传递排序方面)。
那么高一致性比率的一个原因可能是缺乏预测试采样的专业知识。这种情况可能与缺乏知识的受访者样本有关,也可能与处理一个迄今为止尚未发展出足够经验的非常新或复杂的问题有关。
(2)You can employ an AHP software to change in a quickly manner the values obtained. However, it is very difficult if you have many criteria (more than 6 or 7) .Commonly in the matricial array you can start providing values to the first row, and the second one depends on the first. A software tool such as Expert Choice is affordable and easy to use.
您可以使用AHP软件快速更改获得的值。然而,如果你有很多标准(超过6或7),这是非常困难的。通常在矩阵数组中,你可以开始向第一行提供值,第二行取决于第一行。像Expert Choice这样的软件工具价格合理且易于使用。
(3)You are absolutely right when stating that with more tha t6 or 7 criteria it is very diffcicult to get a CR<0.1.
This is one of the many drawbacks of AHP. How do you manage if you have 50 or 100 criteria?
I would very much appreciate it if you can clarify your statement
‘Commonly in the matricial array you can start providing values to the first row, and the second one depends on the first’.
You say that the second row depends on the first? Why?
当你说超过6或7个标准时,很难得到CR<0.1,这是绝对正确的。
这是AHP的许多缺点之一。如果你有50或100个标准,你该如何管理?
如果你能澄清你的陈述,我将不胜感激
“通常在矩阵数组中,您可以开始向第一行提供值,第二行取决于第一行”。
你说第二排取决于第一排?为什么?
(4)关于CR的阈值是否可以大于0.1?
It depends on the matrix size. The greater the size of the matrix, the more CR values > 0.1 are acceptable. See, for example, WC Wedley ‘Consistency Prediction for incomplete AHP matrices’ (1993) for details.
CR depends mainly on the matrix size following the recommendations of “WC Wedley, 1993 Consistency Prediction for incomplete AHP matrices”. In addition, it depends on the sample characteristics and the analysis (group and/or individual), for individuals experts, CR is restricted to 0.10 or 0.15, while for group responds CR could be relaxed to 0.20 to allow for non-expert responds following the recommendations of “Ho, D., Newell, G. and Walker, A. (2005). The importance of property-specific attributes in assessing CBD office building quality. Journal of Property Investment & Finance, 23(5), 424-444”.
CR主要取决于矩阵大小,遵循“WC-Wedley,1993不完全AHP矩阵的一致性预测”的建议。此外,这取决于样本特征和分析(组和/或个人),对于个人专家,CR被限制为0.10或0.15,而根据“Ho,D.,Newell,G.和Walker,A.(2005).房地产特定属性在评估CBD办公楼质量中的重要性.房地产投资与金融杂志,23(5),424-444”的建议,小组回应的CR可以放宽到0.20,以允许非专家回应。
着重看:
关于AHP的科普
(1)相关的链接在此,对CR能否为负等做出了解释
(2)知乎的科普**在此**
四、AHP 的改进
目前的方法似乎都是来调整原始矩阵
需要找到一种新方法来进行调整——并且需要理论支撑
其次需要有结果分析吧?没有结果对比感觉不够充分,不够饱满
针对主客观赋权方法的优缺点,我们还力求将主观随机性控制在一定范围内,实现主客观赋权中的中正。客观方面。指标赋权公正,实现了主客观内在统一,评价结果真实、科学、可信。
因此,在对指标进行权重分配时,应考虑指标数据之间的内在统计规律和权威值。给出了合理的决策指标赋权方法**,即采用主观赋权法(AHP)和客观赋权法(熵权法)相结合的组合赋权方法,以弥补单一赋权带来的不足。**将两种赋权方法相结合的加权方法称为组合赋权法。