(一)LSTM模型理解
1.长短期记忆模型(long-short term memory)是一种特殊的RNN模型,是为了解决RNN模型梯度弥散的问题而提出的;在传统的RNN中,训练算法使用的是BPTT,当时间比较长时,需要回传的残差会指数下降,导致网络权重更新缓慢,无法体现出RNN的长期记忆的效果,因此需要一个存储单元来存储记忆,因此LSTM模型被提出;
2.下面两个图可以看出RNN与LSTM的区别:
(1)RNN
(2)LSTM
PS:
(1)部分图形含义如下:
(一)LSTM模型理解
1.长短期记忆模型(long-short term memory)是一种特殊的RNN模型,是为了解决RNN模型梯度弥散的问题而提出的;在传统的RNN中,训练算法使用的是BPTT,当时间比较长时,需要回传的残差会指数下降,导致网络权重更新缓慢,无法体现出RNN的长期记忆的效果,因此需要一个存储单元来存储记忆,因此LSTM模型被提出;
2.下面两个图可以看出RNN与LSTM的区别:
(1)RNN
(2)LSTM
PS:
(1)部分图形含义如下: