CTC模型

CTC模型连接在RNN网络的最后一层,用于序列学习任务,特别是序列标注。通过添加空白字符,CTC能处理不同长度的输入序列。模型训练涉及条件概率计算、损失函数和梯度下降优化。解码过程简化了路径计算,使得预测更有效。本文是对CTC模型的基础介绍。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

CTC模型(Connectionist temporal classification)接在RNN网络的最后一层用于序列学习所用;对于一段长度为T的序列来说,每个样本点 t 在RNN网络的最后一层都会输出一个softmax向量,表示预测概率;接上CTC模型之后,就可以正确预测出序列的标签;

(一)简介

1.假设一段长为T的序列的每个时间点的label有可能是L个不同的label中的一个,那么这段序列的label总共有L的T次方种可能;

2.在CTC模型中,一般为把L个label扩展到L+1个label,多加一个空白字符的label,表示序列中的空白之处;

3.我们把L的T次方种可能的每一种可能称为一条“PATH”,其条件概率如下:


4.由于在学习的过程中一般使用滑动窗口,并且序列之间有空白隔开,那么可以将每条路经中重复的地方以及空白预测去除,比如:

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值