TF-IDF

(一)简介

1.TF-IDF实际上是:TF * IDF,TF词频(Term Frequency),IDF逆向文件频率(Inverse Document Frequency);

2.字词的重要性随着它在文件中出现的次数成正比增加,但同时会随着它在语料库中出现的频率成反比下降;

(二)原理

1.词频:在一份给定的文件里,某一个给定的词语在该文件中出现的次数;这个数字通常会被归一化(分子一般小于分母),以防止它偏向长的文件(同一个词语在长文件里可能会比短文件有更高的词频,而不管该词语重要与否);

2.逆向文件频率:是一个词语普遍重要性的度量;某一特定词语的IDF,可以由总文件数目除以包含该词语之文件的数目,再将得到的商取对数得到;

3.某一特定文件内的高词语频率,以及该词语在整个文件集合中的低文件频率,可以产生出高权重的TF-IDF;因此,TF-IDF倾向于过滤掉常见的词语,保留重要的词语;

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值