使用SqlServer中的float类型时发现的问题

在做项目中,使用了float类型来定义一些列,如:Price,但是发现了很多问题
1、当值的位数大于6位是float型再转varchar型的时候会变为科学技术法显示
    此时只好将float型转换成numeric型,在转换成varchar
2、float型变量在存入值时,有时值得大小会发生改变。这个现象发生在对报价保存时,如:保存一个3.8,但到了数据库中变成了3.80001124或3.79998999等
在SqlServer的帮助中是这样描述float类型的:用于表示浮点数字数据的近似数字数据类型。浮点数据为近似值;并非数据类型范围内的所有数据都能精确地表示。
所以今后这个类型一定要慎用
### MongoDB 数据导入导出方法与工具 #### 使用 `mongodump` 和 `mongorestore` `mongodump` 是一种用于从 MongoDB 数据库中读取数据并生成 BSON 文件的备份工具。它可以用来创建整个数据库或者特定集合的数据副本,非常适合于小型至中型规模的数据备份场景[^4]。 以下是使用 `mongodump` 的基本命令结构: ```bash mongodump --host <dbhost> --db <dbname> --username <user> --password <password> --out <output_directory> ``` 执行此命令后,会将指定数据库中的所有数据保存到目标目录下的子文件夹中。如果需要针对某个具体集合操作,则可以附加参数 `--collection=<collection_name>` 来限定范围。 相对应地,当需要把通过 `mongodump` 创建的备份重新加载回 MongoDB 实例,可利用其配套工具 `mongorestore` 完成这一过程。下面是一个典型的调用方式实例: ```bash mongorestore --host <dbhost> --db <dbname> --collection <collection_name> --dir <path_to_backup_files> --username <user> --password <password> ``` 这里需要注意的是,在实际应用过程中可能还需要考虑网络延迟、存储空间等因素的影响;对于超大规模的数据集而言,单纯依赖这些基础命令或许无法满足性能需求,此应当探索更高级别的配置选项或是采用分片集群架构来优化流程效率[^5]。 #### 利用 `mongoimport` 及 `mongoexport` 除了上述基于二进制格式(BSON)的操作手段之外,MongoDB 还另外准备了一套面向文本形式(如 JSON、CSV 或 TSV)处理的服务——即 `mongoimport` 和 `mongoexport` 组合。它们允许开发者更加灵活便捷地完成跨平台间不同类型文档之间的转换工作[^2]。 例如要将以 CSV 表格样式呈现出来的记录迁移到 NoSQL 存储引擎内部去的话,那么只需简单编写如下脚本即可实现自动化迁移任务: ```bash mongoimport --type csv --file data.csv --headerline --db testDb --collection contacts ``` 而反过来要是想提取某张表里面部分字段出来形成新的平面文件供其他程序分析解读之用呢?那就可以借助另一个兄弟产品来做这件事啦! ```bash mongoexport --db testDb --collection contacts --fields name,email --type=csv --out contact-info.csv ``` 以上两种途径各有千秋,前者侧重于保持原始对象层次关系不的同快速填充大量初始内容进去;后者则强调易读性和互操作性方面优势明显一些[^3]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值