deep learning
梦家
博客主页:https://dreamhomes.top/
展开
-
PyTorch 简明学习教程与高效编程技巧
背景邻近毕业季事情多且杂,已很长时间未接触PyTorch编程了,不动手实践以前学习的内容就慢慢淡忘了,而且现在PyTorch已更新到版本1.5.0,回想起最开始学习PyTorch时还是版本0.4.1只能感叹技术迭代和AI发展的速度太快了啊!以前学习的tutorials换电脑时也丢了…遂…本篇文章首先简单过一遍PyTorch基础内容,再结合 Github 上的 tutorials 学习一些高效的PyTorch编程技巧!当然首推PyTorch官方教程: PyTorch tutorialsPytorch原创 2020-05-10 11:48:38 · 594 阅读 · 0 评论 -
全局池化(global pooling)
原文博客:https://blog.csdn.net/JNingWei/article/details/80064451global pooling是pooling的滑窗size和整张feature map的size一样大。这样,每个 W×H×C 的feature map输入就会被转化为 1×1×C 输出。因此,其实也等同于每个位置权重都为 1/(W×H) 的FC层操作。global pooli...转载 2019-04-09 14:24:36 · 3320 阅读 · 0 评论 -
PyTorch中 tensor.detach() 和 tensor.data 的区别
PyTorch0.4中,.data 仍保留,但建议使用 .detach(), 区别在于 .data 返回和 x 的相同数据 tensor, 但不会加入到x的计算历史里,且require s_grad = False, 这样有些时候是不安全的, 因为 x.data 不能被 autograd 追踪求微分 。 .detach() 返回相同数据的 tensor ,且 requires_grad=False...原创 2018-12-26 11:33:52 · 40038 阅读 · 2 评论 -
深度学习之各种类型的卷积运算
各种卷积运算group convolution(群卷积或分组卷积)point-wise convolution (点卷积)separable convolution(可分离卷积)depth-wise convolution (深度卷积)dilated convolution (空洞卷积)group convolution(群卷积或分组卷积)假设上一层的feature map总共有...原创 2018-12-24 14:42:05 · 7183 阅读 · 0 评论 -
图深度神经网络综述(一)
图深度神经网络综述(一)参考文献:Deep Learning on Graphs: A Survey简介在图结构数据上使用深度学习的限制:图的不规则性与图像,音频或文本数据不同,图是一种不规则的数据结构。因此,对于神经网络难以定义对应的卷积或者池化操作。造成了几何上的深度学习问题。图的不同结构和处理任务图可能有多重结构,例如同构的或者异质的,加权的和不加权的,有符号的...原创 2018-12-18 16:01:12 · 3470 阅读 · 0 评论 -
PyTorch之迁移学习(Transfer Learning)
TRANSFER LEARNING TUTORIALFinetuning the convnet: Instead of random initializaion, we initialize the network with a pretrained network, like the one that is trained on imagenet 1000 dataset. Rest of...原创 2018-11-14 19:21:35 · 1052 阅读 · 0 评论 -
关于Numpy+TensorFlow+PyTorch构造NN的总结
使用Tensor的理由+静态图和动态图的区别implement the network using numpy and pytorchimport numpy as npimport torchdtype = torch.floatdevice = torch.device("cpu")# device = torch.device("cuda:0")# N: batch siz...原创 2018-11-13 21:39:47 · 473 阅读 · 0 评论 -
Deep Learning: Keras + Boston_housing
Predicting house price: a regression example# -*- coding: utf-8 -*-"""@Date: 2018/10/7@Author: dreamhomes@Summary:"""from keras.datasets import boston_housingfrom keras import modelsfrom ...原创 2018-10-07 11:39:41 · 922 阅读 · 0 评论 -
Deep Learning: Keras + Reuters
Classifying newswires: a multiclass classification example# -*- coding: utf-8 -*-"""@Date: 2018/10/6@Author: dreamhomes@Summary:"""from keras.datasets import reutersfrom keras.utils.np_util...原创 2018-10-06 21:08:15 · 370 阅读 · 0 评论 -
Deep Learning: Keras + IMDB
Classifying movie reviews: a binary classification example# -*- coding: utf-8 -*-"""@Date: 2018/10/5@Author: dreamhomes@Summary:"""from keras.datasets import imdbfrom keras import modelsfr...原创 2018-10-06 21:05:30 · 438 阅读 · 0 评论 -
Deep Learning: Keras + MNIST
Keras + MNISTData representations for neural networksData representations for neural networks# -*- coding: utf-8 -*-"""@Date: 2018/9/28@Author: dreamhomes@Summary:"""from keras.utils impor...原创 2018-10-06 21:02:25 · 213 阅读 · 0 评论 -
基于Tensorflow+Python实现降噪自动编码器(DAE)
It is our choices that show what we truly are, far more than our abilities. 决定我们一生的,不是我们的能力,而是我们的选择。基于Tensorflow+Python实现降噪自动编码器(DAE)本代码原理参考书籍TensorFlow 实战# -*- coding: UTF-8 -*-'''Created on 20原创 2017-09-10 19:09:31 · 5729 阅读 · 1 评论