k进制FWT学习笔记

本文从线性代数的角度探讨快速变换,并详细推导了K进制FWT(Fast Wavelet Transform)的系数矩阵。通过构造特定矩阵f,实现了由系数表示到点值表示的转换,利用分治法实现快速计算。同时,文章指出矩阵元素的关系与单位根反演相似,提出了fi,j的定义,并给出了f及其逆矩阵的表达式。最后,文章以一个例题来说明FWT的应用。" 80586041,5712315,使用ShellExecute调用exe或bat文件参数详解,['Win32API(系统调用)'],"['ShellExecute', 'Win32API', '系统调用', 'exe', 'bat', '参数', '窗口显示', '错误代码']
摘要由CSDN通过智能技术生成

从线性代数角度看快速变换

考虑我们现在对两个幂级数 A , B A,B A,B 定义运算 ∗ * :

假设 A ∗ B = C A*B=C AB=C ,那么要求满足 C k = ∑ i ⊕ j = k A i B j C_k=\sum\limits_{i\oplus j=k}A_iB_j Ck=ij=kAiBj ,现在给出 A , B A,B A,B ,要求快速求出 C C C

于是我们考虑构造矩阵 f f f 满足 ( f ∗ A ) ∗ ( f ∗ B ) = ( f ∗ C ) (f*A)*(f*B)=(f*C) (fA)(fB)=(fC) f f f 可逆,那么现在只需快速求出 f ∗ A , f ∗ B , f − 1 ( f ∗ C ) f*A,f*B,f^{-1}(f*C) fA,fB,f1(fC)即可。

不难发现当 ⊕ \oplus 为加法时我们的 f f f 即是系数表示法到点值表示法的转移矩阵。

现在考虑推导 K K K 进制 F W T FWT FWT 的系数矩阵:

不妨设 n = K i − 1 n=K^i-1 n=Ki1 ,那么有
( f ∗ A ) [ x ] ∗ ( f ∗ B ) [ x ] = ( f ∗ C ) [ x ] ( ∑ i = 0 n f x , i a i ) ( ∑ i = 0 n f x , i b i ) = ∑ i = 0 n f x , i c i f x , k = ∑ i ⊕ j = k f x , i f x , j \begin{aligned}(f*A)[x]*(f*B)[x]=&(f*C)[x]\\(\sum\limits_{i=0}^{n}f_{x,i}a_i)(\sum\limits_{i=0}^nf_{x,i}b_i)=&\sum\limits_{i=0}^nf_{x,i}c_i\\f_{x,k}=&\sum\limits_{i\oplus j=k}f_{x,i}f_{x,j}\end{aligned} (fA)[x](fB)[x]=(i=0nfx,iai)(i=0nfx,ibi)=fx,k=(fC)[x]i=0nfx,iciij=kfx,ifx,j

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值