从线性代数角度看快速变换
考虑我们现在对两个幂级数 A , B A,B A,B 定义运算 ∗ * ∗ :
假设 A ∗ B = C A*B=C A∗B=C ,那么要求满足 C k = ∑ i ⊕ j = k A i B j C_k=\sum\limits_{i\oplus j=k}A_iB_j Ck=i⊕j=k∑AiBj ,现在给出 A , B A,B A,B ,要求快速求出 C C C 。
于是我们考虑构造矩阵 f f f 满足 ( f ∗ A ) ∗ ( f ∗ B ) = ( f ∗ C ) (f*A)*(f*B)=(f*C) (f∗A)∗(f∗B)=(f∗C) 且 f f f 可逆,那么现在只需快速求出 f ∗ A , f ∗ B , f − 1 ( f ∗ C ) f*A,f*B,f^{-1}(f*C) f∗A,f∗B,f−1(f∗C)即可。
不难发现当 ⊕ \oplus ⊕ 为加法时我们的 f f f 即是系数表示法到点值表示法的转移矩阵。
现在考虑推导 K K K 进制 F W T FWT FWT 的系数矩阵:
不妨设 n = K i − 1 n=K^i-1 n=Ki−1 ,那么有
( f ∗ A ) [ x ] ∗ ( f ∗ B ) [ x ] = ( f ∗ C ) [ x ] ( ∑ i = 0 n f x , i a i ) ( ∑ i = 0 n f x , i b i ) = ∑ i = 0 n f x , i c i f x , k = ∑ i ⊕ j = k f x , i f x , j \begin{aligned}(f*A)[x]*(f*B)[x]=&(f*C)[x]\\(\sum\limits_{i=0}^{n}f_{x,i}a_i)(\sum\limits_{i=0}^nf_{x,i}b_i)=&\sum\limits_{i=0}^nf_{x,i}c_i\\f_{x,k}=&\sum\limits_{i\oplus j=k}f_{x,i}f_{x,j}\end{aligned} (f∗A)[x]∗(f∗B)[x]=(i=0∑nfx,iai)(i=0∑nfx,ibi)=fx,k=(f∗C)[x]i=0∑nfx,icii⊕j=k∑fx,ifx,j