2018.11.14 uoj#34. 多项式乘法(fft)

传送门
N O I p NOIp NOIp爆炸不能阻止我搞 o i oi oi的决心
信息技术课进行一点康复训练。
f f t fft fft板题。
代码:

#include<bits/stdc++.h>
using namespace std;
inline int read(){
	int ans=0;
	char ch=getchar();
	while(!isdigit(ch))ch=getchar();
	while(isdigit(ch))ans=(ans<<3)+(ans<<1)+(ch^48),ch=getchar();
	return ans;
}
const int N=4e5+5;
const double pi=acos(-1.0);
int n,m,lim=1,tim=0,pos[N];
struct Complex{
	double x,y;
	friend inline Complex operator+(const Complex&a,const Complex&b){return (Complex){a.x+b.x,a.y+b.y};}
	friend inline Complex operator-(const Complex&a,const Complex&b){return (Complex){a.x-b.x,a.y-b.y};}
	friend inline Complex operator*(const Complex&a,const Complex&b){return (Complex){a.x*b.x-a.y*b.y,a.x*b.y+a.y*b.x};}
}a[N],b[N];
inline void fft(Complex a[],int type){
	for(int i=0;i<lim;++i)if(i<pos[i])swap(a[i],a[pos[i]]);
	for(int mid=1;mid<lim;mid<<=1){
		Complex w_n=(Complex){cos(pi/mid),type*sin(pi/mid)};
		for(int j=0,len=mid<<1;j<lim;j+=len){
			Complex w=(Complex){1,0};
			for(int k=0;k<mid;++k,w=w*w_n){
				Complex a0=a[j+k],a1=w*a[j+k+mid];
				a[j+k]=a0+a1,a[j+k+mid]=a0-a1;
			}
		}
	}
}
int main(){
	n=read(),m=read();
	for(int i=0;i<=n;++i)a[i].x=read();
	for(int i=0;i<=m;++i)b[i].x=read();
	while(lim<=n+m)lim<<=1,++tim;
	for(int i=0;i<lim;++i)pos[i]=(pos[i>>1]>>1)|((i&1)<<(tim-1));
	fft(a,1),fft(b,1);
	for(int i=0;i<lim;++i)a[i]=a[i]*b[i];
	fft(a,-1);
	for(int i=0;i<=n+m;++i)printf("%d ",(int)(a[i].x/lim+0.5));
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值