【深度学习】Anaconda创建虚拟环境+pytorch安装

本文详细描述了如何在Python3.8环境中创建虚拟环境,使用conda进行库管理,特别关注了如何安装PyTorch及其对应CUDA版本的选择。作者分享了创建新环境、激活环境、导库和处理CUDA兼容性等步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

一、开篇

二、python版本

三、创建虚拟环境并使用

三、pytorch安装

四、小结


一、开篇

        笔者近期需要对NLP领域论文中的一些模型进行复现,打算创建一个新的环境进行实验,简单记录一下这个过程。本文包括虚拟环境创建以及导库的一系列流程,特别是关于pytorch的安装。

二、python版本

        查看python版本,用于创建环境时选择相应的版本。在学习机器学习和深度学习前,大家可能已经下载过python并配置了环境变量。但是可能时间久远,已经忘记了当时的版本号。

        搜索cmd打开命令窗口,并输入(注意V是大写)查看版本号:

python -V

        如下:

         可以看到版本为3.8。

三、创建虚拟环境并使用

(1)打开Anaconda Prompt

        初始都是默认进入base环境,下面罗列一些常用指令:

conda list #查看当前环境已经有的库

conda env list #查看已有虚拟环境

activate (环境名) #激活环境

pip install (需导入的库名) -i https://pypi.tuna.tsinghua.edu.cn/simple #在自己想要的环境下导入需要的库,库名后面跟“==版本”可精确所要的版本号,否则使用默认,-i后面添加清华镜像源,导库先人一步

pip uninstall (需要删除的库名) #需要的库版本不对,删掉重来

(2)创建我的新环境mynlp (环境名自拟)

        指令:

conda create -n (环境名) python=(自己的python版本号)

        如下:

        会有提示[y/n]?输入y即可。输入后会有一段加载进度条。

(3)激活环境

        当我们创建好自己的环境后,需要激活环境,才能在指定环境中配置相应的库文件。

        指令:

activate (环境名)

        如下:

        观察会发现激活环境后,前方的(base)环境,变成了我们激活的新创建的环境(mynlp),说明环境激活成功。

(4)导库

        一般论文或者是日常项目,严谨的作者都会在项目中保留一个名为requirement.txt文件,其中会指明本文项目或模型所使用的库版本。运行其项目的代码,最好使用相同版本库,避免由于版本问题导致的代码运行出错。

        下面我们开始依次导库。

        指令:

pip install (需导入的库名) -i https://pypi.tuna.tsinghua.edu.cn/simple

        如下演示如何导入指定版本accelerate==0.4.0:

pip install accelerate==0.4.0 -i https://pypi.tuna.tsinghua.edu.cn/simple

        在导入过程中,会有进度条提示,使用镜像源之后,速度会有较大提升,导入成功后会有Successfully等一串成功提示(没报错一般都是成功或者已经有库不用重复导库的提示)。

        常用的一些镜像源如下,使用方法相同,跟在-i后面:

清华大学:https://pypi.tuna.tsinghua.edu.cn/simple
阿里云:http://mirrors.aliyun.com/pypi/simple
豆瓣:http://pypi.douban.com/simple
中国科技大学:http://pypi.mirrors.ustc.edu.cn/simple
网易云:https://mirrors.163.com/pypi/simple

四、pytorch安装

        在学习深度学习的过程中,总会使用主流框架中的一种,pytorch就是其中之一,由于其对不同硬件和操作系统有不同适配,因此其安装与其他库安装会有一些不同。

(1)查看CUDA版本(使用GPU训练)

        根据自身电脑的CUDA版本,选择对应的pytorch版本。

        输入指令:

nvidia-smi

        如下:

        可以看到笔者电脑中的CUDA Version为11.4,因此我在选择pytorch版本时不选择高于11.4的版本,直接选择11.4对应的版本。

(2)pytorch官网查看:

        pytorch官网:https://pytorch.org/

        下滑可以看到如下界面:

        点击红色部分进入历史版本,进行进一步选择。本文论文使用的pytorch版本是torch==1.9.1,检索历史记录可以找到这个版本,并且它的CUDA版本要求是11.3(我是11.4)因此可以兼容。如果CUDA版本达不到要求,又想用论文项目对应的pytorch,可以选择CPU训练(如下图)。

(3)pytorch安装

        根据自身需求从pytorch官网历史记录中找到相应版本,复制安装指令,在自己虚拟环境下进行安装即可。

        例如笔者运行指令:

conda install pytorch==1.9.1 torchvision==0.10.1 torchaudio==0.9.1 cudatoolkit=11.3 -c pytorch -c conda-forge

        下载时间会有一点久,耐心等待……

五、小结

        笔者在学习的过程中,就环境问题其实也踩过不少坑,比如环境的库是否真正隔离,或者一些库导入的时候可能会影响到其他库等等。似乎解决的最好方式就是多练多搜,实在不行,那就删掉重新开始!在反复折磨的过程中,积攒的经验会让你走的更远。

在Windows系统上安装并配置PyTorch GPU版以进行深度学习,需要按照一定的步骤来进行。首先,安装Anaconda创建虚拟环境的基础。Anaconda可以帮助我们管理Python包和环境,并且安装过程中可以选择将Anaconda添加到系统环境变量中,这样在命令行中可以直接调用conda命令。接下来,创建一个独立的虚拟环境是必要的,因为它可以避免不同项目之间的依赖冲突。使用conda create命令结合-n选项可以创建一个名为特定名称的新环境,并可以通过-y选项自动确认所有安装步骤。 参考资源链接:[Windows环境下PyTorch(GPU版)安装全攻略:Anaconda、CUDA、PyCharm配置](https://wenku.csdn.net/doc/8bvo19f0bk) 在确认虚拟环境创建无误后,接下来是安装CUDA。CUDA是NVIDIA提供的并行计算平台和编程模型,它允许开发者使用NVIDIA GPU进行通用计算。安装CUDA后,需要在系统中进行相应的配置和验证,确保CUDA能够正确识别你的GPU设备。 接下来,通过conda install或pip install命令安装PyTorch GPU版,确保在安装时选择与CUDA版本相匹配的PyTorch版本。安装完成后,可以运行一些基本代码来验证PyTorch是否能够识别CUDA。 配置好Python环境后,选择Jupyter Notebook作为交互式编程环境是一个不错的选择。它可以方便地编写和运行代码,展示结果。在Jupyter中,我们需要安装ipykernel来确保虚拟环境能够被Jupyter识别。安装完毕后,通过jupyter kernelspec install命令将虚拟环境注册为一个新的内核,然后就可以在Jupyter Notebook中选择使用该内核进行深度学习项目开发。 至于PyCharm,作为一款集成开发环境(IDE),它提供了代码高亮、代码补全、项目管理等功能。为了在PyCharm中使用我们的虚拟环境,需要在PyCharm的项目解释器设置中指定到虚拟环境中的Python解释器。这样设置后,PyCharm就可以利用虚拟环境中的依赖库来运行深度学习项目。 通过以上的步骤,就可以在Windows系统上完成PyTorch GPU版的安装,并配置好Jupyter和PyCharm这两个工具来高效地进行深度学习项目开发。在这个过程中,《Windows环境下PyTorch(GPU版)安装全攻略:Anaconda、CUDA、PyCharm配置》可以提供具体的步骤和技巧,帮助用户顺利完成配置,同时加深对环境管理的理解。 参考资源链接:[Windows环境下PyTorch(GPU版)安装全攻略:Anaconda、CUDA、PyCharm配置](https://wenku.csdn.net/doc/8bvo19f0bk)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值