POJ1015 Jury Compromise

  • 题目大意
    选择陪审团。多组输入,从n个人中选取m个人。每个人都有d和p两个数字 ,D(J)=sum(dk),P(J)=sum(pk).选取标准:minimal |D(J)-P(J)|.如果最终答案有多个一样的,那么再在其中选取maximizes|D(J)+P(J)|。
    D e s c r i p t i o n \textcolor{blue}{Description} Description
    In Frobnia, a far-away country, the verdicts in court trials are determined by a jury consisting of members of the general public. Every time a trial is set to begin, a jury has to be selected, which is done as follows. First, several people are drawn randomly from the public. For each person in this pool, defence and prosecution assign a grade from 0 to 20 indicating their preference for this person. 0 means total dislike, 20 on the other hand means that this person is considered ideally suited for the jury.
    Based on the grades of the two parties, the judge selects the jury. In order to ensure a fair trial, the tendencies of the jury to favour either defence or prosecution should be as balanced as possible. The jury therefore has to be chosen in a way that is satisfactory to both parties.
    We will now make this more precise: given a pool of n potential jurors and two values di (the defence’s value) and pi (the prosecution’s value) for each potential juror i, you are to select a jury of m persons. If J is a subset of {1,…, n} with m elements, then D(J ) = sum(dk) k belong to J
    and P(J) = sum(pk) k belong to J are the total values of this jury for defence and prosecution.
    For an optimal jury J , the value |D(J) - P(J)| must be minimal. If there are several jurys with minimal |D(J) - P(J)|, one which maximizes D(J) + P(J) should be selected since the jury should be as ideal as possible for both parties.
    You are to write a program that implements this jury selection process and chooses an optimal jury given a set of candidates.
    I n p u t \color{blue}{Input} Input
    The input file contains several jury selection rounds. Each round starts with a line containing two integers n and m. n is the number of candidates and m the number of jury members.
    These values will satisfy 1<=n<=200, 1<=m<=20 and of course m<=n. The following n lines contain the two integers pi and di for i = 1,…,n. A blank line separates each round from the next.
    The file ends with a round that has n = m = 0.
    O u t p u t \textcolor{blue}{Output} Output
    For each round output a line containing the number of the jury selection round (‘Jury #1’, ‘Jury #2’, etc.).
    On the next line print the values D(J ) and P (J ) of your jury as shown below and on another line print the numbers of the m chosen candidates in ascending order. Output a blank before each individual candidate number.
    Output an empty line after each test case.
    H i n t \textcolor{blue}{Hint} Hint
    If your solution is based on an inefficient algorithm, it may not execute the allotted time.
  • 题目分析
    错误思路:设dp[i][j]为前i个人选出了j个人的差的最小值,那么只需要从dp[i-1] [j]和dp[i-1][j-1]考虑转移就行了,分别是选当前和不选当前的情况。然后最后输出dp[n][m]。
    然而,存在这样一种类型的数据:在这个范围内没有被选到,而在下一个范围内却被选到了。【打破了dp的原则:最优子结构和无后效性。】
    正确思路:将dp[i][j]表示选了第i个人当前差值为j时的和最大值。
    其中用到了
    修正值
    的概念。修正值,防止出现负数下标的。因为相减时可能会出现负数。修正后会回避下标负数问题,使得区间整体平移,从[-400,400]映射到[0,800]。
  • 代码

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.StringTokenizer;

public class Main {
	
	static int path[][],n,m,key=0,d,p;
	static int dp[][],di[],pi[];
	
	public static void main(String[] args) throws IOException {
		
		InputStream input=System.in;
		OutputStream output=System.out;
		InputReader in=new InputReader(input);
		PrintWriter out=new PrintWriter(output);
		
		dp=new int [30][1010];//dp[i][j]表示选了第i个人当前差值为j时的和最大值。
		path =new int [30][1010];//path[i][j]表示选了第i个人当前差值为j时对应和值最大值前一个人的编号
		di=new int [210];
		pi=new int [210];
		int []id=new int [30];
		while(true) {
			n=in.nextInt();m=in.nextInt();
			if(n==0&&m==0) break ;
			out.printf("Jury #%d\n", ++key);
			init();
			for(int i=1;i<=n;i++) {
				p=in.nextInt();
				d=in.nextInt();
				di[i]=p-d;pi[i]=p+d;
			}
			int M=20*2*m+1;
			int S=20*m;//修正值fix,防止出现负数下标的。相减时可能会出现负数。
			dp[0][S]=0;
			for(int i=1;i<=m;i++) {
				//k 的最大取值范围是[-Min, Min], 但是数组不能表示负数, 因此将数组向右平移 Min,得到[0, 2*Min]
				for(int k=0;k<=S*2;k++) {//	之前没有注意到修正值这个问题 就出现了负数下标。
					if(dp[i-1][k]>=0) {//代表k这个差值存在
						for(int j=1;j<=n;j++) {
							//对n个人进行遍历,如果这个人没有被选过,而且选了这个人之后和值比之前的大,那么久选它。
							if(select(i-1,k,j) &&dp[i-1][k]+pi[j]>dp[i][k+di[j]]) {
								dp[i][k+di[j]]=dp[i-1][k]+pi[j];//更新数据
								path[i][k+di[j]]=j;
							}
						}
					}
				}
			}
			//到了这一步,dp已经处理完成了。接下来处理 输出 的问题。
			int k;
			//要选辩控差值最小的,所求k就是所选m个人辩控差值最小的:从区间重心两边寻找最近点即可找到差值最小的状态。
			for(k=0;k<=S;k++) {
				if(dp[m][S-k]>=0 || dp[m][S+k]>=0) break;
			}
			//算控辩方总分的时候,其实是数学问题。
			int div=(dp[m][S-k]>dp[m][S+k])?(S-k):(S+k); //找最合理答案=记录差值(即差值最小,和值最大)
			int D=(dp[m][div]-div+S)/2;//控方总分
			int P=(dp[m][div]+div-S)/2;//辩方总分
			out.printf("Best jury has value %d for prosecution and value %d for defence:\n", P, D);
	        int i,j;
			for(i=0,j=m,k=div;i<m;++i){
	            id[i] = path[j][k];
	            k -= di[id[i]];
	            j--;
	        }
	        Arrays.sort(id,0,m);
	        for(i=0;i<m;++i)
	        	out.printf(" %d", id[i]);
	        out.println("\n\n");
		}
		out.close();
	}
	static void init() {
		for(int i=0;i<=21;i++) {
			for(int j=0;j<=810;j++) {
				path[i][j]=0;
				dp[i][j]=-1;
			}
		}
	}
	static boolean select(int j,int k,int i) {
		//检查这个人是否已经被选过了。
		while(j>0&&path[j][k]!=i) {
			k-=di[path[j][k]];
			j--;
		}
		if(j==0) return true;
		return false;
	}
	static void solve() {
		int n=21;
	}
	static class node implements Comparable<node>{
		int d,p,cut,sum;
		public node(int d,int p) {
			this.d=d;this.p=p;
			cut=(d-p);
			sum=d+p;
		}
		public int compareTo(node o) {
			return cut-o.cut;
		}
	}
	static class InputReader{
		public BufferedReader reader;
		public StringTokenizer tokenizer;
		public InputReader(InputStream stream) {
			reader=new BufferedReader(new InputStreamReader(stream));
			tokenizer=null;
		}
		String next() {
			while(tokenizer==null|| !tokenizer.hasMoreTokens()) {
				try {
					tokenizer =new StringTokenizer(reader.readLine());
				}catch(IOException e) {
					throw new RuntimeException (e);
				}
			}
			return tokenizer.nextToken();
		}
		String nextLine() throws IOException{
			return reader.readLine();
		}
		int nextInt() {
			return Integer.parseInt(next());
		}
	}
}
/*
4 2 
1 2 
2 3 
4 1 
6 2 
0 0 

Jury #1 
Best jury has value 6 for prosecution and value 4 for defence: 
 2 3 
*/
数据中心机房是现代信息技术的核心设施,它承载着企业的重要数据和服务,因此,其基础设计与规划至关重要。在制定这样的方案时,需要考虑的因素繁多,包括但不限于以下几点: 1. **容量规划**:必须根据业务需求预测未来几年的数据处理和存储需求,合理规划机房的规模和设备容量。这涉及到服务器的数量、存储设备的容量以及网络带宽的需求等。 2. **电力供应**:数据中心是能源消耗大户,因此电力供应设计是关键。要考虑不间断电源(UPS)、备用发电机的容量,以及高效节能的电力分配系统,确保电力的稳定供应并降低能耗。 3. **冷却系统**:由于设备密集运行,散热问题不容忽视。合理的空调布局和冷却系统设计可以有效控制机房温度,避免设备过热引发故障。 4. **物理安全**:包括防火、防盗、防震、防潮等措施。需要设计防火分区、安装烟雾探测和自动灭火系统,设置访问控制系统,确保只有授权人员能进入。 5. **网络架构**:规划高速、稳定、冗余的网络架构,考虑使用光纤、以太网等技术,构建层次化网络,保证数据传输的高效性和安全性。 6. **运维管理**:设计易于管理和维护的IT基础设施,例如模块化设计便于扩展,集中监控系统可以实时查看设备状态,及时发现并解决问题。 7. **绿色数据中心**:随着环保意识的提升,绿色数据中心成为趋势。采用节能设备,利用自然冷源,以及优化能源管理策略,实现低能耗和低碳排放。 8. **灾难恢复**:考虑备份和恢复策略,建立异地灾备中心,确保在主数据中心发生故障时,业务能够快速恢复。 9. **法规遵从**:需遵循国家和地区的相关法律法规,如信息安全、数据保护和环境保护等,确保数据中心的合法运营。 10. **扩展性**:设计时应考虑到未来的业务发展和技术进步,保证机房有充足的扩展空间和升级能力。 技术创新在数据中心机房基础设计及规划方案中扮演了重要角色。例如,采用虚拟化技术可以提高硬件资源利用率,软件定义网络(SDN)提供更灵活的网络管理,人工智能和机器学习则有助于优化能源管理和故障预测。 总结来说,一个完整且高效的数据中心机房设计及规划方案,不仅需要满足当前的技术需求和业务目标,还需要具备前瞻性和可持续性,以适应快速变化的IT环境和未来可能的技术革新。同时,也要注重经济效益,平衡投资成本与长期运营成本,实现数据中心的高效、安全和绿色运行。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值