手把手教你用python做一个年会抽奖系统

引言

马上就要举行年会抽奖了,我们都不知道是否有人能够中奖。我觉得无聊的时候可以尝试自己写一个抽奖系统,主要是为了娱乐。现在人工智能这么方便,写一个简单的代码不是一件困难的事情。今天我想和大家一起构建一个简易的抽奖系统,这样也能够巩固一下我自己对Python语法和框架的理解。

今天我们将继续使用Python语言进行开发,并且使用最简单的HTML、JS、CSS来配置样式和界面。在Python中,我们将使用一个名为fastapi的第三方框架,虽然这是我第一次接触它,但我发现它真的非常方便使用,简直就像是把飞机开在马路上一样。与使用Spring框架相比,fastapi让搭建过程变得轻松愉快。

这个抽奖系统的业务逻辑其实非常简单。首先,我们需要一个9宫格的页面,用户可以在页面上添加参与人员。虽然我们可以使用数据库来存储参与人员的信息,但为了方便演示,我选择了简单地使用内存存储。

在这个系统中,除了保证每个人只有一个参与机会外,其他的校验要求都很少。然后,用户可以通过点击开始按钮,页面会随机停下来,然后将停下来的奖项传给后台并保存,最后在前端页面上显示。

虽然逻辑简单,但是通过这个抽奖系统的开发,我们可以巩固自己对Python语法和框架的理解,同时也能够体验到人工智能带来的便利。让我们一起动手搭建这个简易版的抽奖系统吧!

前端界面

尽管前端界面写得不够出色,但这并非我今天的重点。实际上,我想回顾一下Python的编写方式和框架的理解。我创建了一个简单的九宫格,每个格子都设有不同的奖项,而且用户还可以手动进行设置和修改,从而保证了灵活性。

前端代码:

<!DOCTYPE html>
<html lang="en">
<head>
    <meta charset="UTF-8">
    <title>抽奖系统</title>
    <link rel="stylesheet" href="/static/css/styles.css">
    <script src="/static/js/main.js"></script>
</head>
<body>
    <h1>欢迎来到小雨抽奖系统</h1>
    <form id="participant-form">
        <label for="participant-name">参与者姓名:</label>
        <input type="text" id="participant-name" name="participant-name" required>
        <button type="submit">添加参与者</button>
    </form>
    <div id="grid">
        <div class="grid-item" data-prize="奖项1">奖项1</div>
        <div class="grid-item" data-prize="奖项2">奖项2</div>
        <div class="grid-item" data-prize="奖项3">奖项3</div>
        <div class="grid-item" data-prize="奖项4">奖项4</div>
        <div class="grid-item" data-prize="奖项5">奖项5</div>
        <div class="grid-item" data-prize="奖项6">奖项6</div>
        <div class="grid-item" data-prize="奖项7">奖项7</div>
        <div class="grid-item" data-prize="奖项8">奖项8</div>
        <div class="grid-item" data-prize="奖项9">奖项9</div>
    </div>
    <button id="draw-button">抽奖</button>
    <h2>获奖名单</h2>
    <ul id="prize-list"></ul>
    <script>
        document.getElementById('participant-form').addEventListener('submit', function(event) {
            event.preventDefault();
            var participantName = document.getElementById('participant-name').value;
            fetch('/participant', {
                method: 'POST',
                headers: {
                    'Content-Type': 'application/json',
                },
                body: JSON.stringify({name: participantName}),
            })
            .then(response => response.json())
            .then(data => {
                console.log(data);
                document.getElementById('participant-name').value = '';
            })
            .catch((error) => {
                console.error('Error:', error);
            });
        });

        document.getElementById('draw-button').addEventListener('click', function() {
            var items = document.getElementsByClassName('grid-item');
            var index = 0;
            var interval = setInterval(function() {
                items[index].classList.remove('active');
                index = (index + 1) % items.length;
                items[index].classList.add('active');
            }, 100);
            setTimeout(function() {
                clearInterval(interval);
                var prize = items[index].getAttribute('data-prize');
                fetch('/draw', {
                    method: 'POST',
                    headers: {
                        'Content-Type': 'application/json',
                    },
                    body: JSON.stringify({prize: prize}),
                })
                .then(response => response.json())
                .then(data => {
                    console.log(data);
                    if (data.code !== 1) {
                        alert(data.message);
                    } else {
                        var li = document.createElement("li");
                        li.appendChild(document.createTextNode(data.message));
                        document.getElementById('prize-list').appendChild(li);
                    }
                })
                .catch((error) => {
                    console.error('Error:', error);
                });
            }, Math.floor(Math.random() * (10000 - 3000 + 1)) + 3000);
        });
    </script>
</body>
</html>
</h2></button></title>

CSS样式主要用于配置9个宫格的显示位置和实现动态动画高亮效果。除此之外,并没有对其他效果进行配置。如果你有兴趣,可以在抽奖后自行添加一些炫彩烟花等效果,完全取决于你的发挥。

代码如下:

body {
    font-family: Arial, sans-serif;
    margin: 0;
    padding: 0;
    background-color: #f4f4f4;
}

h1, h2 {
    color: #333;
}

form {
    margin-bottom: 20px;
}

#participant-form {
    display: flex;
    justify-content: center;
    margin-top: 20px;
}

#participant-form label {
    margin-right: 10px;
}

#participant-form input {
    margin-right: 10px;
}

#participant-form button {
    background-color: #4CAF50;
    color: white;
    border: none;
    padding: 10px 20px;
    text-align: center;
    text-decoration: none;
    display: inline-block;
    font-size: 16px;
    margin: 4px 2px;
    cursor: pointer;
}

#draw-button {
    display: block;
    width: 200px;
    height: 50px;
    margin: 20px auto;
    background-color: #f44336;
    color: white;
    border: none;
    text-align: center;
    line-height: 50px;
    font-size: 20px;
    cursor: pointer;
}

#grid {
    display: grid;
    grid-template-columns: repeat(3, 1fr);
    grid-template-rows: repeat(3, 1fr);
    gap: 10px;
    width: 300px;
    height: 300px;
    margin: 0 auto; /* This will center the grid horizontally */
}

.grid-item {
    width: 100%;
    height: 100%;
    border: 1px solid black;
    display: flex;
    justify-content: center;
    align-items: center;
}

.grid-item.active {
    background-color: yellow;
}

#prize-list {
    list-style-type: none;
    padding: 0;
    width: 80%;
    margin: 20px auto;
}

#prize-list li {
    padding: 10px;
    border-bottom: 1px solid #ccc;
}

Python后台

在我们的Python后端中,我们选择使用了fastapi作为框架来接收请求。这个框架有很多优点,其中最重要的是它的速度快、简单易懂。但唯一需要注意的是,在前端向后端传递请求参数时,请求头必须包含一个json的标识。如果没有这个标识,后端将无法正确接收参数,并可能报错。

为了更好地优化我们的后端,如果你有足够的时间,可以考虑集成数据库等一些重量级的操作。这样可以更好地处理数据,并提供更多功能。

主要的Python代码如下:

from fastapi import FastAPI, Request
from fastapi.templating import Jinja2Templates
from fastapi.staticfiles import StaticFiles
# from models import Participant, Prize
# from database import SessionLocal, engine
from pydantic import BaseModel
from random import choice

app = FastAPI()

app.mount("/static", StaticFiles(directory="static"), name="static")

templates = Jinja2Templates(directory="templates")
prizes = []
participants = []

class Participant(BaseModel):
    name: str

class Prize(BaseModel):
    winner: str
    prize: str
    
class DatePrize(BaseModel):
    prize: str

@app.get("/")
async def root(request: Request):
    return templates.TemplateResponse("index.html", {"request": request})

@app.post("/participant")
async def add_participant(participant: Participant):
   participants.append(participant)
   return {"message": "Participant added successfully"}

@app.post("/draw")
async def draw_prize(date_prize: DatePrize):
    if not participants:
        return {"message": "No participants available","code":0}
    winner = choice(participants)
    prize = Prize(winner=winner.name,prize=date_prize.prize)
    prizes.append(prize)
    participants.remove(winner)
    return {"message": f"Congratulations {winner.name}, you have won a prize : {date_prize.prize}!","code":1}


@app.get("/prizes")
async def get_prizes():
    return {"prizes": [prize.winner for prize in prizes]}

@app.get("/participants")
async def get_participants():
    return {"participants": [participant.name for participant in participants]}

由于我使用的是poetry作为项目的运行工具,因此在使用之前,你需要进行一些配置工作。

[tool.poetry]
name = "python-lottery"
version = "0.1.0"
description = "python 抽奖"
authors = ["努力的小雨"]

[tool.poetry.dependencies]
python = "^3.10"
fastapi = "^0.105.0"
jinja2 = "^3.1.2"


[[tool.poetry.source]]
name = "aliyun"
url = "https://mirrors.aliyun.com/pypi/simple/"
default = true
secondary = false

启动项目命令:poetry run uvicorn main:app --reload --port 8081

效果图

image

总结

在本文中,我们使用Python语言和fastapi框架构建了一个简易的抽奖系统。系统的前端界面使用了HTML、JS和CSS来配置样式和实现交互效果。后端使用了fastapi框架接收前端的请求,并处理抽奖逻辑。

说实话,虽然我们有能力开发一个简易的抽奖系统,但既然我们都是程序员,为何要费力去搞一个抽奖系统呢?我们可以采用更简单的方式,将每个人的序号写在纸条上,放进一个纸箱子里,然后让领导亲自用手抓取。这样做不仅更可靠,还能增加年会的活跃氛围。

文章转载自:努力的小雨

原文链接:https://www.cnblogs.com/guoxiaoyu/p/17914771.html

体验项目:引迈 - JNPF快速开发平台_低代码开发平台_零代码开发平台_流程设计器_表单引擎_工作流引擎_软件架构

好的,我可以为您提供一些关于使用Python代码实现Transformer的指导。 首先,您需要安装PyTorch和torchtext库。然后,您可以按照以下步骤实现Transformer模型: 1. 定义输入和输出的词汇表,并使用torchtext库加载数据集。 2. 定义Transformer模型的编码器和解码器部分。 3. 实现自注意力机制(self-attention)和前向神经网络(feed-forward network)。 4. 实现残差连接(residual connection)和层归一化(layer normalization)。 5. 定义Transformer模型的训练和评估过程。 下面是一个简单的示例代码,用于实现一个基本的Transformer模型: ```python import torch import torch.nn as nn import torch.optim as optim import torch.nn.functional as F from torchtext.datasets import TranslationDataset, Multi30k from torchtext.data import Field, BucketIterator # 定义输入和输出的词汇表 SRC = Field(tokenize='spacy', tokenizer_language='de', init_token='<sos>', eos_token='<eos>', lower=True) TRG = Field(tokenize='spacy', tokenizer_language='en', init_token='<sos>', eos_token='<eos>', lower=True) # 加载数据集 train_data, valid_data, test_data = Multi30k.splits(exts=('.de', '.en'), fields=(SRC, TRG)) SRC.build_vocab(train_data, min_freq=2) TRG.build_vocab(train_data, min_freq=2) # 定义Transformer模型的编码器和解码器部分 class Encoder(nn.Module): def __init__(self, input_dim, hid_dim, n_layers, n_heads, pf_dim, dropout, device): super().__init__() self.device = device self.tok_embedding = nn.Embedding(input_dim, hid_dim) self.pos_embedding = nn.Embedding(1000, hid_dim) self.layers = nn.ModuleList([EncoderLayer(hid_dim, n_heads, pf_dim, dropout, device) for _ in range(n_layers)]) self.dropout = nn.Dropout(dropout) self.scale = torch.sqrt(torch.FloatTensor([hid_dim])).to(device) def forward(self, src, src_mask): # src: [batch_size, src_len] # src_mask: [batch_size, 1, 1, src_len] batch_size = src.shape[0] src_len = src.shape[1] pos = torch.arange(0, src_len).unsqueeze(0).repeat(batch_size, 1).to(self.device) # pos: [batch_size, src_len] src = self.dropout((self.tok_embedding(src) * self.scale) + self.pos_embedding(pos)) for layer in self.layers: src = layer(src, src_mask) return src class EncoderLayer(nn.Module): def __init__(self, hid_dim, n_heads, pf_dim, dropout, device): super().__init__() self.self_attn_layer_norm = nn.LayerNorm(hid_dim) self.ff_layer_norm = nn.LayerNorm(hid_dim) self.self_attention = MultiHeadAttentionLayer(hid_dim, n_heads, dropout, device) self.positionwise_feedforward = PositionwiseFeedforwardLayer(hid_dim, pf_dim, dropout) self.dropout = nn.Dropout(dropout) def forward(self, src, src_mask):
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值