题源:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=27634
题意:三个数,第一个数N, R, Q。 1N < 101, 000, 0R < Q1, 000。找出最大的没有前导零的由 N 的若干位不打乱顺序构成的数,设这个数%Q==R. 如果不存在输出Not found
思路:
复杂度1000(N长度)*1000(Q的余数)*10(枚举每一位的数字)*200(case数)。。。1.9s过了。。。
状态在代码注释中
因为判断这么大的数的大小,就先看这个数有多少位(没有前导零),其次从高位往低位比较每一位大小。
所以我们的状态第一维是结果的长度。然后从高位的9到1(如果不是首位可以是0)枚举。
状态转移的时候,新加进来的那一位是最左边的。存的是满足条件最靠右的。
int pos = max(f[len-1][i], g[len-1][i]);
对于 g 转移方程很简单 就是g[len][i] = max(g[len][i], pre[pos-1][0]);
对于 f 转移方程为枚举1到9 for(j=1; j<=9; ++j){ int ii = (i+j*ten[len-1])%Q; f[len][ii] = max(f[len][ii], pre[pos-1][j]); }
代码:
char a[1111];
int ten[1111];//10^i % Q
int pre[1111][11];//i位置左边最靠近他的j的位置
int nxt[1111][11];//i位置右边最靠近他的j的位置
int f[1111][1111];//所求的数长度为i,模Q为j,并且最左边的数不为零,的最右边的位置
int g[1111][1111];//所求的数长度为i,模Q为j,并且最左边的数为零,的最右边的位置
char ans[1111];
int T, R, Q, N;
int lenN;
void out(int len, int R, int low, int pos){
if(len<=0) return;
int i, tmp;
for(i=9; i>=low; --i){//从大到小枚举
tmp = (R - ten[len-1] * i % Q + Q) % Q;
//在pos右边最近的i,的右边存在[len-1][tmp]的状态,就是i可以
if(max(g[len-1][tmp], f[len-1][tmp]) >= nxt[pos][i]+1) break;
}
ans[lenN-len] = i+'0';
out(len-1, tmp, 0, nxt[pos][i]+1);
}
int main() {
scanf("%d", &T);
while(T--){
scanf("%s%d%d", a+1, &R, &Q);
N = strlen(a+1);
int i, j;
ten[0] = 1%Q;
for(i=1; i<=N; ++i) ten[i] = (ten[i-1]*10)%Q;
for(i=0; i<=9; ++i) pre[0][i] = 0;
for(i=1; i<=N; ++i){
for(j=0; j<=9; ++j){
if(a[i]-'0'==j) pre[i][j] = i;
else pre[i][j] = pre[i-1][j];
}
}
for(i=0;i<=9;++i) nxt[N+1][i] = N+1;
for(i=N; i>=1; --i){
for(j=0; j<=9; ++j){
if(a[i]-'0'==j) nxt[i][j] = i;
else nxt[i][j] = nxt[i+1][j];
}
}
for(i=1; i<=N; ++i) for(j=0; j<Q; ++j) f[i][j] = g[i][j] = 0;
for(i=1; i<=9; ++i) f[1][i%Q] = max(f[1][i%Q], pre[N][i]);
g[0][0] = N+1;
g[1][0] = pre[N][0];
int len;
for(len = 2; len <= N; ++len){
for(int i=0; i<Q; ++i){
int pos = max(f[len-1][i], g[len-1][i]);
if(pos<1 || pos>N) continue;
g[len][i] = max(g[len][i], pre[pos-1][0]);
for(j=1; j<=9; ++j){
int ii = (i+j*ten[len-1])%Q;
f[len][ii] = max(f[len][ii], pre[pos-1][j]);
}
}
}
//区分f和g两个状态就是为了判断这里,找到最长的没有前导零的状态
for(len=N; len>0; --len) if(f[len][R]) break;
lenN = len;
if(len==0){
puts("Not found");
continue;
}
out(len, R, 1, 1);
ans[lenN] = '\0';
puts(ans);
}
return 0;
}