【DP】

题源http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=27634



题意:三个数,第一个数N, R, Q。 1$ \le$N < 101, 0000$ \le$R < Q$ \le$1, 000。找出最大的没有前导零的由 N 的若干位不打乱顺序构成的数,设这个数%Q==R. 如果不存在输出Not found



思路:

复杂度1000(N长度)*1000(Q的余数)*10(枚举每一位的数字)*200(case数)。。。1.9s过了。。。

状态在代码注释中

因为判断这么大的数的大小,就先看这个数有多少位(没有前导零),其次从高位往低位比较每一位大小。

所以我们的状态第一维是结果的长度。然后从高位的9到1(如果不是首位可以是0)枚举。


状态转移的时候,新加进来的那一位是最左边的。存的是满足条件最靠右的。

int pos = max(f[len-1][i], g[len-1][i]);

对于 g 转移方程很简单 就是g[len][i] = max(g[len][i], pre[pos-1][0]);

对于 f 转移方程为枚举1到9 for(j=1; j<=9; ++j){ int ii = (i+j*ten[len-1])%Q; f[len][ii] = max(f[len][ii], pre[pos-1][j]); }



代码:

char a[1111];
int ten[1111];//10^i % Q
int pre[1111][11];//i位置左边最靠近他的j的位置
int nxt[1111][11];//i位置右边最靠近他的j的位置
int f[1111][1111];//所求的数长度为i,模Q为j,并且最左边的数不为零,的最右边的位置
int g[1111][1111];//所求的数长度为i,模Q为j,并且最左边的数为零,的最右边的位置
char ans[1111];
int T, R, Q, N;
int lenN;

void out(int len, int R, int low, int pos){
    if(len<=0) return;
    int i, tmp;
    for(i=9; i>=low; --i){//从大到小枚举
        tmp = (R - ten[len-1] * i % Q + Q) % Q;
        //在pos右边最近的i,的右边存在[len-1][tmp]的状态,就是i可以
        if(max(g[len-1][tmp], f[len-1][tmp]) >= nxt[pos][i]+1) break;
    }
    ans[lenN-len] = i+'0';
    out(len-1, tmp, 0, nxt[pos][i]+1);
}

int main() {
    scanf("%d", &T);
    while(T--){
        scanf("%s%d%d", a+1, &R, &Q);
        N = strlen(a+1);
        int i, j;
        ten[0] = 1%Q;
        for(i=1; i<=N; ++i) ten[i] = (ten[i-1]*10)%Q;
        for(i=0; i<=9; ++i) pre[0][i] = 0;
        for(i=1; i<=N; ++i){
            for(j=0; j<=9; ++j){
                if(a[i]-'0'==j) pre[i][j] = i;
                else pre[i][j] = pre[i-1][j];
            }
        }
        for(i=0;i<=9;++i) nxt[N+1][i] = N+1;
        for(i=N; i>=1; --i){
            for(j=0; j<=9; ++j){
                if(a[i]-'0'==j) nxt[i][j] = i;
                else nxt[i][j] = nxt[i+1][j];
            }
        }

        for(i=1; i<=N; ++i) for(j=0; j<Q; ++j) f[i][j] = g[i][j] = 0;
        for(i=1; i<=9; ++i) f[1][i%Q] = max(f[1][i%Q], pre[N][i]);
        g[0][0] = N+1;
        g[1][0] = pre[N][0];
        int len;
        for(len = 2; len <= N; ++len){
            for(int i=0; i<Q; ++i){
                int pos = max(f[len-1][i], g[len-1][i]);
                if(pos<1 || pos>N) continue;
                g[len][i] = max(g[len][i], pre[pos-1][0]);
                for(j=1; j<=9; ++j){
                    int ii = (i+j*ten[len-1])%Q;
                    f[len][ii] = max(f[len][ii], pre[pos-1][j]);
                }
            }
        }

        //区分f和g两个状态就是为了判断这里,找到最长的没有前导零的状态
        for(len=N; len>0; --len) if(f[len][R]) break;
        lenN = len;
        if(len==0){
            puts("Not found");
            continue;
        }

        out(len, R, 1, 1);
        ans[lenN] = '\0';
        puts(ans);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值