【Author : MZ】Regionals 2010, Asia - Amritapuri - J

每条边至多在一个环里面。

难点就是环里面有多少种选择。

f[1] = k;

f[2] = f[1]*(k-1);

f[3] = f[2]*(k-2);

for(int x=4; x<=n; x++)
        f[x] = (k-1)*f[x-2]+(k-2)*f[x-1];

就是往x-2的环里面加两个点,有 (k-1)*f[x-2]种;

往x-1里面加一个点,有(k-2)*f[x-1]种。

最后剩下m个不在环里的。一定存在点与环有边。如果已经算出环的结果,他有(k-1)种选择。以此类推其他点。

const int N = 111111;
const LL mod = 1000000007;

int to[N], vis[N], st[N];
int tp, n, k;
LL f[2222];
LL ans;

LL pow(LL x, int n)
{
	LL ans = 1, tmp = x;
	while(n)
	{
		if(n&1) ans *= tmp;
		tmp *= tmp;
		ans %= mod;
		tmp %= mod;
		n>>=1;
	}
	return ans;
}

void init()
{
    f[1] = k;
    f[2] = f[1]*(k-1);
    f[3] = f[2]*(k-2);
    for(int x=4; x<=n; x++)
        f[x] = ((LL)(k-1)*f[x-2]+(LL)(k-2)*f[x-1])%mod;
}

void dfs(int u, int id)
{
	do{
		vis[u] = id;
		st[tp++] = u;
		u = to[u];
	}while(!vis[u]);
	if(vis[u]==id){
		int t = 0;
		while(st[tp-1]!=u) --tp, ++t;
		--tp, ++t;
		ans *= f[t];
		ans %= mod;
	}
}

int main()
{
	int t, i;
	scanf("%d", &t);
	while(t--)
	{
		scanf("%d%d", &n, &k);
		init();
		for(i=0; i<n; i++) scanf("%d", &to[i]);
		memset(vis, 0, sizeof(vis));

		ans = 1LL;
		tp = 0;
		for(i=0; i<n; i++)
			if(vis[i]==0) dfs(i, i+1);
		ans *= pow(k-1, tp); //长度为tp的链
		cout<<ans%mod<<endl;
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值