如何在LangChain中使用Banana进行无服务器GPU推理
引言
在深度学习和人工智能的领域中,高效地部署和推理模型是一个关键挑战。Banana提供了一个无服务器的GPU推理平台,可以大大简化这一过程,同时还提供了CI/CD构建管道和一个简单的Python框架(Potassium)用于服务化你的模型。本篇文章将引导你如何在LangChain中使用Banana来进行无服务器GPU推理。
主要内容
安装和设置
首先,我们需要安装Banana的Python包banana-dev
:
pip install banana-dev
接下来,从Banana.dev的仪表板获取你的API密钥,并将其设置为环境变量:
export BANANA_API_KEY='your_banana_api_key'
然后,从模型的详情页获取模型的密钥和URL标记。
定义你的Banana模板
你需要为你的Banana应用设置一个GitHub仓库。可以使用这个指南在5分钟内开始。或者,你可以查看Banana的CodeLlama-7B-Instruct-GPTQ GitHub仓库,直接fork它并在Banana中部署。
构建Banana应用
为了在LangChain中使用Banana应用,你必须在返回的JSON中包含outputs
键,其值必须是一个字符串。例如,一个推理函数可以这样写:
# app.py
from banana_dev import Banana, Request, Response # 引入Banana相关库
@app.handler