[全面掌握Baidu Qianfan:企业开发者的AI利器]

引言

随着AI技术的飞速发展,企业对大模型开发和服务操作平台的需求日益增长。百度的Qianfan平台正满足了这一需求,通过提供一站式的大模型开发和服务操作解决方案,帮助企业开发者便捷地使用和开发大型模型应用。本文将介绍如何在Qianfan平台上结合langchain库,特别是在Completion任务中实现高效开发。

主要内容

Qianfan平台简介

Qianfan平台不仅提供文心一言(ERNIE-Bot)模型,还支持多个第三方开源模型。其优势在于为用户提供了丰富的AI开发工具和完整的开发环境,简化了大模型应用的开发过程。

支持的模型

  • ERNIE-Bot-turbo(默认)
  • ERNIE-Bot
  • BLOOMZ-7B
  • Llama-2-7b-chat 等

这些模型涵盖了Embedding、Chat、Completion等多种类型,为不同应用场景下的需求提供支持。

API初始化

为了使用Baidu Qianfan的LLM服务,需要初始化API参数。可以选择在环境变量中设置AK和SK:

export QIANFAN_AK=your_ak
export QIANFAN_SK=your_sk

安装所需包

在进行开发前,确保安装了langchain-community包:

%pip install -qU langchain-community

代码示例

以下示例展示了如何使用Qianfan平台结合langchain进行简单的Completion任务:

import os
from langchain_community.llms import QianfanLLMEndpoint

# 设置环境变量
os.environ["QIANFAN_AK"] = "your_ak"
os.environ["QIANFAN_SK"] = "your_sk"

# 初始化LLM端点
llm = QianfanLLMEndpoint(streaming=True) # 使用API代理服务提高访问稳定性
response = llm.invoke("hi")
print(response)

# 测试生成功能
res = llm.generate(prompts=["hello?"])
print(res)

常见问题和解决方案

  1. 网络访问限制

    由于某些地区的网络限制,开发者可能需要考虑使用API代理服务来提高访问稳定性。

  2. 模型参数支持

    目前仅支持ERNIE-Bot和ERNIE-Bot-turbo的模型参数,如temperaturetop_p等。在未来可能会支持更多模型。

res = llm.generate(
    prompts=["hi"],
    streaming=True,
    **{"top_p": 0.4, "temperature": 0.1, "penalty_score": 1},
)
for r in res:
    print(r)

总结和进一步学习资源

Qianfan平台为企业开发者提供了强大而便捷的AI开发工具。在实际应用中,结合langchain可以极大提高开发效率。建议开发者深入阅读平台的LLM概念指南如何使用指南以获取更多信息。

参考资料

如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!

—END—

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值