引言
随着AI技术的飞速发展,企业对大模型开发和服务操作平台的需求日益增长。百度的Qianfan平台正满足了这一需求,通过提供一站式的大模型开发和服务操作解决方案,帮助企业开发者便捷地使用和开发大型模型应用。本文将介绍如何在Qianfan平台上结合langchain库,特别是在Completion任务中实现高效开发。
主要内容
Qianfan平台简介
Qianfan平台不仅提供文心一言(ERNIE-Bot)模型,还支持多个第三方开源模型。其优势在于为用户提供了丰富的AI开发工具和完整的开发环境,简化了大模型应用的开发过程。
支持的模型
- ERNIE-Bot-turbo(默认)
- ERNIE-Bot
- BLOOMZ-7B
- Llama-2-7b-chat 等
这些模型涵盖了Embedding、Chat、Completion等多种类型,为不同应用场景下的需求提供支持。
API初始化
为了使用Baidu Qianfan的LLM服务,需要初始化API参数。可以选择在环境变量中设置AK和SK:
export QIANFAN_AK=your_ak
export QIANFAN_SK=your_sk
安装所需包
在进行开发前,确保安装了langchain-community
包:
%pip install -qU langchain-community
代码示例
以下示例展示了如何使用Qianfan平台结合langchain进行简单的Completion任务:
import os
from langchain_community.llms import QianfanLLMEndpoint
# 设置环境变量
os.environ["QIANFAN_AK"] = "your_ak"
os.environ["QIANFAN_SK"] = "your_sk"
# 初始化LLM端点
llm = QianfanLLMEndpoint(streaming=True) # 使用API代理服务提高访问稳定性
response = llm.invoke("hi")
print(response)
# 测试生成功能
res = llm.generate(prompts=["hello?"])
print(res)
常见问题和解决方案
-
网络访问限制
由于某些地区的网络限制,开发者可能需要考虑使用API代理服务来提高访问稳定性。
-
模型参数支持
目前仅支持ERNIE-Bot和ERNIE-Bot-turbo的模型参数,如
temperature
、top_p
等。在未来可能会支持更多模型。
res = llm.generate(
prompts=["hi"],
streaming=True,
**{"top_p": 0.4, "temperature": 0.1, "penalty_score": 1},
)
for r in res:
print(r)
总结和进一步学习资源
Qianfan平台为企业开发者提供了强大而便捷的AI开发工具。在实际应用中,结合langchain可以极大提高开发效率。建议开发者深入阅读平台的LLM概念指南和如何使用指南以获取更多信息。
参考资料
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—