装饰器本质上是一个函数,它接受一个函数作为参数并返回一个新函数。通过使用@
符号,我们可以将装饰器应用于任何函数。
def my_decorator(func):
def wrapper():
print("Something is happening before the function is called.")
func()
print("Something is happening after the function is called.")
return wrapper
@my_decorator
def say_hello():
print("Hello!")
say_hello()
在上面的例子中,my_decorator
是一个装饰器,它在say_hello
函数执行前后添加了额外的打印语句。
应用场景
1. 日志记录
装饰器可以用来记录函数的调用细节,这在调试和监控应用时非常有用。
def log_decorator(func):
def wrapper(*args, **kwargs):
print(f"{func.__name__} was called")
return func(*args, **kwargs)
return wrapper
@log_decorator
def add(x, y):
return x + y
2. 性能测试
使用装饰器来测量函数执行时间,对于性能分析非常有用。
import time
def timing_decorator(func):
def wrapper(*args, **kwargs):
start_time = time.time()
result = func(*args, **kwargs)
end_time = time.time()
print(f"{func.__name__} took {end_time - start_time} seconds")
return result
return wrapper
3. 数据缓存
装饰器可以用于缓存函数的结果,避免重复计算。
from functools import lru_cache
@lru_cache(maxsize=100)
def fib(n):
if n < 2:
return n
return fib(n-1) + fib(n-2)
4. 输入验证
确保函数接收有效输入。
def validate_decorator(func):
def wrapper(x, y):
if isinstance(x, int) and isinstance(y, int):
return func(x, y)
else:
raise ValueError("Input must be integers")
return wrapper
@validate_decorator
def multiply(x, y):
return x * y
5. 授权与身份验证
检查用户是否有执行函数的权限。
def auth_decorator(func):
def wrapper(*args, **kwargs):
if user_is_authenticated():
return func(*args, **kwargs)
else:
raise PermissionError("You do not have permission to execute this function")
return wrapper
6. 参数修改
修改函数的输入参数。
def modify_args_decorator(func):
def wrapper(*args, **kwargs):
new_args = [arg * 2 for arg in args]
return func(*new_args, **kwargs)
return wrapper
7. 错误处理
捕获函数中的异常并进行处理。
def error_handling_decorator(func):
def wrapper(*args, **kwargs):
try:
return func(*args, **kwargs)
except Exception as e:
print(f"Error occurred: {e}")
return wrapper
8. 单例模式
确保类的实例只创建一次。
def singleton(cls):
instances = {}
def wrapper(*args, **kwargs):
if cls not in instances:
instances[cls] = cls(*args, **kwargs)
return instances[cls]
return wrapper
@singleton
class Database:
pass
9. 事件监听
在特定事件发生时执行额外的操作。
def event_listener(event):
def decorator(func):
def wrapper(*args, **
kwargs):
if event_happened(event):
return func(*args, **kwargs)
return wrapper
return decorator
10. 异步编程
使函数能够异步执行。
import asyncio
async def async_decorator(func):
async def wrapper(*args, **kwargs):
await asyncio.sleep(1)
return await func(*args, **kwargs)
return wrapper
@async_decorator
async def fetch_data():
pass
总结
装饰器是Python中一个强大而灵活的工具,它可以在不改变原有代码结构的前提下,为函数增加额外的功能。通过掌握装饰器的使用,你可以使你的Python代码更加高效、优雅和可维护。
学习资源推荐
除了上述分享,学好 Python 不论是就业还是做副业赚钱都不错,但要学会 Python 还是要有一个学习规划。最后大家分享一份全套的 Python 学习资料,给那些想学习 Python 的小伙伴们一点帮助!
包括:Python激活码+安装包、Python web开发,Python爬虫,Python数据分析,人工智能、自动化办公等学习教程。带你从零基础系统性的学好Python!
👉Python所有方向的学习路线👈
Python所有方向路线就是把Python常用的技术点做整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。(全套教程文末领取)
👉Python学习视频600合集👈
观看零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
温馨提示:篇幅有限,已打包文件夹,获取方式在:文末
👉Python70个实战练手案例&源码👈
光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
👉Python大厂面试资料👈
我们学习Python必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。
👉Python副业兼职路线&方法👈
学好 Python 不论是就业还是做副业赚钱都不错,但要学会兼职接单还是要有一个学习规划。
👉 这份完整版的Python全套学习资料已经上传,朋友们如果需要可以V扫描下方二维码联系领取
【保证100%免费
】