力扣刷题day34|62不同路径、63不同路径 II

62. 不同路径

力扣题目链接

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。

问总共有多少条不同的路径?

示例 1:

输入:m = 3, n = 7
输出:28

示例 2:

输入:m = 3, n = 2
输出:3
解释:
从左上角开始,总共有 3 条路径可以到达右下角。
1. 向右 -> 向下 -> 向下
2. 向下 -> 向下 -> 向右
3. 向下 -> 向右 -> 向下

示例 3:

输入:m = 7, n = 3
输出:28

示例 4:

输入:m = 3, n = 3
输出:6

思路

机器人从(0 , 0) 位置出发,到(m - 1, n - 1)终点。

动态规划五部曲
  1. 确定dp数组以及下标的含义

dp[i] [j] :表示从(0 ,0)出发,到(i, j) 有dp[i] [j]条不同的路径。

  1. 确定递推公式

因为上一步只能向右或者向下走到达这一步的位置,想要求dp[i] [j],只能有两个方向来推导出来,即dp[i - 1] [j] 和 dp[i] [j - 1]。

而dp[i - 1] [j] 又表示从(0, 0)的位置到(i - 1, j)有几条路径

dp[i] [j - 1] 又表示从(0, 0)的位置到(i, j - 1)有几条路径

所以dp[i] [j] = dp[i - 1] [j] + dp[i] [j - 1],因为dp[i][j]只有这两个方向过来。

  1. dp数组的初始化

首先dp[i] [0]一定都是1,因为从(0, 0)的位置到(i, 0)的路径只有一条,那么dp[0] [j]也同理。

for (int i = 0; i < m; i++) dp[i][0] = 1;
for (int j = 0; j < n; j++) dp[0][j] = 1;
  1. 确定遍历顺序

这里要看一下递归公式dp[i] [j] = dp[i - 1] [j] + dp[i] [j - 1],dp[i] [j]都是从其上方和左方推导而来,那么从左到右一层一层遍历就可以了。

这样就可以保证推导dp[i] [j]的时候,dp[i - 1] [j] 和 dp[i] [j - 1]一定是有数值的。

  1. 举例推导dp数组

image-20221029203203248

完整代码

public int uniquePaths(int m, int n) {
    int[][] dp = new int[m][n];
    // 初始化
    for (int i = 0; i < m; i++) {
        dp[i][0] = 1;
    }
    for (int j = 0; j < n; j++) {
        dp[0][j] = 1;
    }

    for (int i = 1; i < m; i++) {
        for (int j = 1; j < n; j++) {
            dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
        }
    }

    return dp[m - 1][n - 1];
}

63. 不同路径 II

力扣题目链接

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish”)。

现在考虑网格中有障碍物。那么从左上角到右下角将会有多少条不同的路径?

网格中的障碍物和空位置分别用 10 来表示。

示例 1:

输入:obstacleGrid = [[0,0,0],[0,1,0],[0,0,0]]
输出:2
解释:3x3 网格的正中间有一个障碍物。
从左上角到右下角一共有 2 条不同的路径:
1. 向右 -> 向右 -> 向下 -> 向下
2. 向下 -> 向下 -> 向右 -> 向右

示例 2:

输入:obstacleGrid = [[0,1],[0,0]]
输出:1

思路

有障碍就表示没有路径能到这一点,即这一点dp[i] [j]为0。

动态规划五部曲
  1. 确定dp数组以及下标的含义

dp[i] [j] :表示从(0 ,0)出发,到(i, j) 有dp[i] [j]条不同的路径。

如果(0 ,0)就有障碍,那么一开始就走不下去

  1. 确定递推公式

递推公式和62.不同路径一样,dp[i] [j] = dp[i - 1] [j] + dp[i] [j - 1]。

但这里需要注意一点,因为有了障碍(obstacleGrid为1),(i, j)如果就是障碍的话应该就保持初始状态(初始状态为0)

if (obstacleGrid[i][j] == 0) { // 当(i, j)没有障碍的时候,再推导dp[i][j]
    dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
}
  1. dp数组如何初始化

从(0, 0)的位置到(i, 0)的路径只有一条,所以dp[i][0]一定为1,dp[0][j]也同理。

但如果(i, 0) 这条边有了障碍之后,障碍之后(包括障碍)都是走不到的位置了,所以障碍之后的dp[i][0]应该还是初始值0。

image-20221029212013252

下标(0, j)的初始化情况同理。

// 初始化,碰到障碍后面就都去不了
for (int i = 0; i < m && obstacleGrid[i][0] == 0; i++) {
    dp[i][0] = 1;
}
for (int j = 0; j < n && obstacleGrid[0][j] == 0; j++) {
    dp[0][j] = 1;
}
  1. 确定遍历顺序

递归公式dp[i] [j] = dp[i - 1] [j] + dp[i] [j - 1],dp[i] [j]都是从其上方和左方推导而来,那么从左到右一层一层遍历就可以了。

这样就可以保证推导dp[i] [j]的时候,dp[i - 1] [j] 和 dp[i] [j - 1]一定是有数值的。

  1. 举例推导dp数组

由示例1得

image-20221029212852424

完整代码

public int uniquePathsWithObstacles(int[][] obstacleGrid) {
    int m = obstacleGrid.length;
    int n = obstacleGrid[0].length;
    int[][] dp = new int[m][n];

    //如果在起点或终点出现了障碍,直接返回0
    if (obstacleGrid[0][0] == 1 || obstacleGrid[m - 1][n - 1] == 1) {
        return 0;
    }

    // 初始化,碰到障碍后面就都去不了
    for (int i = 0; i < m && obstacleGrid[i][0] == 0; i++) {
        dp[i][0] = 1;
    }
    for (int j = 0; j < n && obstacleGrid[0][j] == 0; j++) {
        dp[0][j] = 1;
    }

    for (int i = 1; i < m; i++) {
        for (int j = 1; j < n; j++) {
            if (obstacleGrid[i][j] == 1) continue;
            dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
        }
    }
    return dp[m - 1][n - 1];
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值