图增强聚类网络【GraphAugmentationClusteringNetwork】

02_GraphAugmentationClusteringNetwork

Title:图增强聚类网络

Abstract

  1. 现存方法的缺点:极大的依赖于原始图的质量
  2. 解决方法:图增强聚类,自适应的增强原始图来实现更好地聚类效果
  3. 具体方法:
  1. 合并节点属性与拓扑图结构信息,学习潜在的特征表示
  2. 在嵌入空间中探索局部几何结构信息构建邻接图
  3. 使用自适应图图增强结构来融合初始图与邻接图
  4. 最小化多个衍生分布的Jeffreys散度,使用无监督方式进行训练

Introduction

  1. DAE:深度自动编码器网络关注于节点特征信息
  2. DEC:深度嵌入聚类网络通过重建损失改善性能
  3. 对于以DAE基础的网络缺点:忽略了输入的拓扑结构信息
  4. GCN通过传播学习空间临近邻居的表示来实现深度嵌入学习,从而弥补DAE的缺点。通过连接DAE与GCN网络实现节点属性与拓扑结构信息的融合
  5. 本篇文章的贡献:图增强->通过探索网络本身的结构信息来动态的增强初始图
  6. 具体步骤:
  1. 使用GCN与DAE进行图嵌入学习
  2. 在嵌入空间中通过局部几何结构来构建邻接图
  3. 提出具有多层感知器层与一系列归一化项的自适应图增强模块,来进行原始图与邻接图的融合
  4. 最小化多个衍生分布的Jeffreys散度,使用无监督方式进行训练

Proposed Method

模块:深度自动编码模块、图嵌入学习模块、图增强模块

Feature Representation Learning

 

  1. 通过DAE与GCN分别提取节点属性与拓扑图结构信息来实现特征表示
  2. 使用DAE通过最小化重建损失来提取潜在的特征表示Hi

 

    3.使用拉普拉斯平滑算子与激活函数合并数据与邻居信息Zi

 

 

       4.使用MLP与归一化操作融合嵌入向量表示与图的拓扑结构Zi(′)

 

 

     5.聚合不同的GCN层的输出,充分利用结构信息(充分利用1近邻、  2近邻...n近邻结构信息)  Z'

 

 

    6.使用拉普拉斯平滑技术与可学习参数矩阵得到最后的向量表示Za

 

Graph Augmentation Learning

  1. 之前的图聚类网络严重依赖于预定义的图,如果预定义的图的质量不高,学的出来特征可能会比较差。启示我们自适应的增强图,而不是依赖于预定义的图
  2. 我们根据特征表示模块得到的Za来重建图,计算它的相似度矩阵,将相似度矩阵减去对角线矩阵。每一行最大的保持不变,其他的置 为0,之后将对角线元素置为1

 

 

 

     3.融合构建出来的图与原始的图,其中Az  = D1 G,其中Dz是构建图的度矩阵

 

 

Clustering Optimization

  1. 首先根据t分布衡量嵌入向量hi与这一类的质心向量μj的相似度,对于相似度矩阵Q的每一个元素:

     2.训练的结果是根据Za得到聚类结果

     3.根据Za得到辅助分布P,为了实现多个导出分布的一致对齐,    4.最小化Q ,Za和P之间的Jeffreys散度,得到最后的损失函数

 

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值