A permutation of length n is an array containing each integer from 1 to n exactly once. For example, q = [4, 5, 1, 2, 3] is a permutation. For the permutation q the square of permutation is the permutation p that p[i] = q[q[i]] for each i = 1... n. For example, the square of q = [4, 5, 1, 2, 3] is p = q2 = [2, 3, 4, 5, 1].
This problem is about the inverse operation: given the permutation p you task is to find such permutation q that q2 = p. If there are several such q find any of them.
The first line contains integer n (1 ≤ n ≤ 106) — the number of elements in permutation p.
The second line contains n distinct integers p1, p2, ..., pn (1 ≤ pi ≤ n) — the elements of permutation p.
If there is no permutation q such that q2 = p print the number "-1".
If the answer exists print it. The only line should contain n different integers qi (1 ≤ qi ≤ n) — the elements of the permutation q. If there are several solutions print any of them.
4 2 1 4 3
3 4 2 1
4 2 1 3 4
-1
5 2 3 4 5 1
4 5 1 2 3
不太理解 引用一下别人代码
#include<cstdio>
#include<cstring>
#include<vector>
#include<algorithm>
using namespace std;
const int maxn=1e6+10;
int num[maxn];
vector<int> v[maxn];
int n, vis[maxn], ans[maxn], id[maxn];
bool cmp(vector<int> &a, vector<int> &b){
return a.size()<b.size();
}
int main(){
int n;
scanf("%d", &n);
for(int i=1; i<=n; i++)
scanf("%d", &num[i]);
int cnt=0;
for(int i=1; i<=n; i++)
{
if(vis[i]) continue;
int now=i;
++cnt;
do{
vis[now]=1;
v[cnt].push_back(now);
now=num[now];
}while(now!=i);
}
sort(v+1, v+1+cnt, cmp);
for(int i=1; i<=cnt; i++){
int sz=v[i].size();
if(sz & 1){
for(int j=0; j<sz; j++)
id[j*2%sz]=v[i][j];
for(int j=0; j<sz; j++)
ans[id[j]] = id[(j+1)%sz];
}
else if(sz == v[i+1].size()){
for(int j=0; j<sz; j++)
{
ans[v[i][j]]=v[i+1][j];
ans[v[i+1][j]] = v[i][(j+1)%sz];
}
i++;
}
else{
puts("-1");
return 0;
}
}
for(int i=1; i<=n; i++)
printf("%d%s", ans[i], i==n?"\n":" ");
return 0;
}