CodeForces - 612E (置换群)

E. Square Root of Permutation
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

permutation of length n is an array containing each integer from 1 to n exactly once. For example, q = [4, 5, 1, 2, 3] is a permutation. For the permutation q the square of permutation is the permutation p that p[i] = q[q[i]] for each i = 1... n. For example, the square of q = [4, 5, 1, 2, 3] is p = q2 = [2, 3, 4, 5, 1].

This problem is about the inverse operation: given the permutation p you task is to find such permutation q that q2 = p. If there are several such q find any of them.

Input

The first line contains integer n (1 ≤ n ≤ 106) — the number of elements in permutation p.

The second line contains n distinct integers p1, p2, ..., pn (1 ≤ pi ≤ n) — the elements of permutation p.

Output

If there is no permutation q such that q2 = p print the number "-1".

If the answer exists print it. The only line should contain n different integers qi (1 ≤ qi ≤ n) — the elements of the permutation q. If there are several solutions print any of them.

Examples
input
Copy
4
2 1 4 3
output
3 4 2 1
input
Copy
4
2 1 3 4
output
-1
input
Copy
5
2 3 4 5 1
output
4 5 1 2 3

不太理解  引用一下别人代码



#include<cstdio>
#include<cstring>
#include<vector>
#include<algorithm>
using namespace std;
const int maxn=1e6+10;
int num[maxn];
vector<int> v[maxn];
int n, vis[maxn], ans[maxn], id[maxn];

bool cmp(vector<int> &a, vector<int> &b){
	
	return a.size()<b.size();
}

int main(){
	int n;
	scanf("%d", &n);
	
	for(int i=1; i<=n; i++)
		scanf("%d", &num[i]);
	
	int cnt=0;
	
	for(int i=1; i<=n; i++)
	{
		if(vis[i]) continue;
		int now=i;
		++cnt;
		do{
			vis[now]=1;
			v[cnt].push_back(now);
			now=num[now];
		}while(now!=i);
	}
	
	sort(v+1, v+1+cnt, cmp);
	for(int i=1; i<=cnt; i++){
		int sz=v[i].size();
		
		if(sz & 1){
			for(int j=0; j<sz; j++)
				id[j*2%sz]=v[i][j];
			for(int j=0; j<sz; j++)
				ans[id[j]] = id[(j+1)%sz];
		}
		else if(sz == v[i+1].size()){
			for(int j=0; j<sz; j++)
			{
				ans[v[i][j]]=v[i+1][j];
				ans[v[i+1][j]] = v[i][(j+1)%sz];
			}
			i++;
		}
		else{
			puts("-1");
			return 0;
			
		}
		
	}	
	for(int i=1; i<=n; i++)
		printf("%d%s", ans[i], i==n?"\n":" ");
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值