Codeforces 612E 置换群

Codeforces 612E
题目链接:
http://codeforces.com/problemset/problem/612/E
题意:
存在一个1-n的排列p。
现在定义一个1-n的排列q,使得q[i] = p[p[i]]。
给出q,输出一个合法的p。不存在输出-1。
思路:
显然置换群。置换群能分成若干个不相交的环。
环,首先有个可以自己手动模拟出的结论。
1.环的元素个数是偶数,经过一次映射后,环会分裂成两个元素大小相等的环。
2.环的元素个数是奇数,经过一次映射后,环只是移动位置而不会发生分裂。
那么具体如何分裂?假设当前从1出发,经过两次映射后到3、再到5…
故容易知道环的元素个数为奇数则不会发生分裂,且相对于原来的顺序是1357…2468..
故容易知道环的元素个数为偶数会发生分裂,且相对于原来的顺序1357…、2468…

那么,现在求逆运算的时候,如果遇到奇数环,是可逆的;偶数环,和另外一个相同长度的偶数环合并。
源码:

#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cmath>
#include <string>
#include <algorithm>
#include <iostream>
#include <vector>
using namespace std;
const int MAXN = 1e6 + 5;
int pre[MAXN];
int vis[MAXN];
int p[MAXN], q[MAXN];
vector<int>vc1, vc2;
void combine_even(int x, int y)
{
    vc1.clear();
    int org = x;
    do{
//        printf("x = %d, y = %d\n", x, y);
        vc1.push_back(x);   x = p[x];
        vc1.push_back(y);   y = p[y];
    }while(x != org);
//    printf("vc1.size() = %d\n", vc1.size());
    for(int i = 0 ; i < (int)vc1.size() ; i++){
        q[vc1[i]] = vc1[(i + 1) % (int)vc1.size()];
//        printf("for x = %d, y = %d, q[vc1[i]] = %d, vc1[(i+1)%(int(vc1.size()) = %d\n", x, y, q[vc1[i]], vc1[(i+1)%(int)vc1.size()]);
    }
}
void combine_odd(int x, int cnt)
{
//    printf("x = %d\n",x );
    vc1.clear();
    int num = 0;
    int y = x;
    while(num < cnt / 2 + 1){
        y = p[y];
        num++;
    }
//    printf("x = %d, y = %d\n", x, y);
    num = 0;
    while(num < cnt / 2){
        vc1.push_back(x);   x = p[x];
        vc1.push_back(y);   y = p[y];
        num++;
//        printf("x = %d, y = %d\n", x, y);
    }
    vc1.push_back(x);
    for(int i = 0 ; i < (int)vc1.size() ; i++){
        q[vc1[i]] = vc1[(i + 1) % (int)vc1.size()];
    }
}
int main()
{
    int n;
    while(scanf("%d", &n) != EOF){
        memset(vis, 0, sizeof(vis));
        memset(pre, 0, sizeof(pre));
        memset(q, 0, sizeof(q));
        for(int i = 1 ; i <= n ; i++)   scanf("%d", &p[i]);
        for(int i = 1 ; i <= n ; i++)   if(vis[i] == 0){
            int now = i;
            int cnt = 0;
            while(vis[now] == 0)    vis[now] = 1, now = p[now], cnt++;
//            printf("i = %d, cnt = %d\n", i, cnt);
            if(cnt % 2 == 0){
                if(pre[cnt] == 0)   pre[cnt] = i;
                else{
//                    printf("first\n");
                    combine_even(pre[cnt], i);
                    pre[cnt] = 0;
                }
            }
            else    combine_odd(i, cnt);
        }
        int ok = 1;
        for(int i = 1 ; i <= n ; i++){
            if(pre[i] != 0 || q[i] == 0){
//                printf("i = %d, pre[i] = %d, q[i] = %d\n", i, pre[i], q[i]);
                ok = 0;
                break;
            }
        }
        if(ok == 0) printf("-1\n");
        else{
            for(int i = 1 ; i <= n ; i++){
                printf("%d", q[i]);
                if(i == n)  printf("\n");
                else    printf(" ");
            }
        }
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值