Codeforces 612E
题目链接:
http://codeforces.com/problemset/problem/612/E
题意:
存在一个1-n的排列p。
现在定义一个1-n的排列q,使得q[i] = p[p[i]]。
给出q,输出一个合法的p。不存在输出-1。
思路:
显然置换群。置换群能分成若干个不相交的环。
环,首先有个可以自己手动模拟出的结论。
1.环的元素个数是偶数,经过一次映射后,环会分裂成两个元素大小相等的环。
2.环的元素个数是奇数,经过一次映射后,环只是移动位置而不会发生分裂。
那么具体如何分裂?假设当前从1出发,经过两次映射后到3、再到5…
故容易知道环的元素个数为奇数则不会发生分裂,且相对于原来的顺序是1357…2468..
故容易知道环的元素个数为偶数会发生分裂,且相对于原来的顺序1357…、2468…
那么,现在求逆运算的时候,如果遇到奇数环,是可逆的;偶数环,和另外一个相同长度的偶数环合并。
源码:
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cmath>
#include <string>
#include <algorithm>
#include <iostream>
#include <vector>
using namespace std;
const int MAXN = 1e6 + 5;
int pre[MAXN];
int vis[MAXN];
int p[MAXN], q[MAXN];
vector<int>vc1, vc2;
void combine_even(int x, int y)
{
vc1.clear();
int org = x;
do{
// printf("x = %d, y = %d\n", x, y);
vc1.push_back(x); x = p[x];
vc1.push_back(y); y = p[y];
}while(x != org);
// printf("vc1.size() = %d\n", vc1.size());
for(int i = 0 ; i < (int)vc1.size() ; i++){
q[vc1[i]] = vc1[(i + 1) % (int)vc1.size()];
// printf("for x = %d, y = %d, q[vc1[i]] = %d, vc1[(i+1)%(int(vc1.size()) = %d\n", x, y, q[vc1[i]], vc1[(i+1)%(int)vc1.size()]);
}
}
void combine_odd(int x, int cnt)
{
// printf("x = %d\n",x );
vc1.clear();
int num = 0;
int y = x;
while(num < cnt / 2 + 1){
y = p[y];
num++;
}
// printf("x = %d, y = %d\n", x, y);
num = 0;
while(num < cnt / 2){
vc1.push_back(x); x = p[x];
vc1.push_back(y); y = p[y];
num++;
// printf("x = %d, y = %d\n", x, y);
}
vc1.push_back(x);
for(int i = 0 ; i < (int)vc1.size() ; i++){
q[vc1[i]] = vc1[(i + 1) % (int)vc1.size()];
}
}
int main()
{
int n;
while(scanf("%d", &n) != EOF){
memset(vis, 0, sizeof(vis));
memset(pre, 0, sizeof(pre));
memset(q, 0, sizeof(q));
for(int i = 1 ; i <= n ; i++) scanf("%d", &p[i]);
for(int i = 1 ; i <= n ; i++) if(vis[i] == 0){
int now = i;
int cnt = 0;
while(vis[now] == 0) vis[now] = 1, now = p[now], cnt++;
// printf("i = %d, cnt = %d\n", i, cnt);
if(cnt % 2 == 0){
if(pre[cnt] == 0) pre[cnt] = i;
else{
// printf("first\n");
combine_even(pre[cnt], i);
pre[cnt] = 0;
}
}
else combine_odd(i, cnt);
}
int ok = 1;
for(int i = 1 ; i <= n ; i++){
if(pre[i] != 0 || q[i] == 0){
// printf("i = %d, pre[i] = %d, q[i] = %d\n", i, pre[i], q[i]);
ok = 0;
break;
}
}
if(ok == 0) printf("-1\n");
else{
for(int i = 1 ; i <= n ; i++){
printf("%d", q[i]);
if(i == n) printf("\n");
else printf(" ");
}
}
}
return 0;
}