1、问题描述
在数组中的两个数,如果前面的数大于后面的数,则这两个数组成一个逆序对。输入一个数组,求这个数组中逆序对的数量。
2、解题思路
- 边界条件:数组为空指针或者长度小于2,输出0
- 思路1:最简单的方法是使用双循环,第一层循环遍历数组的第1个至倒数第2个元素中的每个元素i,第二层循环遍历元素i后面的每一个元素j,比较i和j的大小,如果i>j,则逆序对的数量加1。这种方法的时间复杂度为 O ( n 2 ) O(n^{2}) O(n2)
- 思路2:可以对归并排序算法的merge过程稍加修改,实现逆序对的计数。我们知道,归并排序的merge过程,实际上是在合并前后两个不相交的有序数组,对于两个有序数组,其逆序对存在以下规律:
假设这两个有序数组分别是 A A A和 B B B( A A A在 B B B之前),如果 A [ i ] > B [ j ] A[i]>B[j] A[i]>B[j],那么 A [ i ] A[i] A[i]与 B [ 0 ] . . . , B [ j − 1 ] , . . . , B [ j ] B[0]...,B[j-1],...,B[j] B[0]...,B[j−1],...,B[j]构成逆序对,即逆序对的数量在原有的逆序对的基础上加 j + 1 j+1 j+1。这种方法的时间复杂度为 O ( n l o g n ) O(nlogn) O(nlogn)。
3、代码实现
import java.util.ArrayList;
public class Solution {
int count = 0;
public int InversePairs(int [] array) {
if(array==null||array.length==0)
{
return 0;
}
int[] copy = new int[array.length];
for(int i=0;i<array.length;i++)
{
copy[i] = array[i];
}
int count = InversePairsCore(array,copy,0,array.length-1);//数值过大求余
return count;
}
public int InversePairsCore(int[] array,int[] copy,int low,int high)
{
if(low==high)
{
return 0;
}
int mid = (low+high)>>1;
int leftCount = InversePairsCore(array,copy,low,mid)%1000000007;
int rightCount = InversePairsCore(array,copy,mid+1,high)%1000000007;
int count = 0;
int i=mid;
int j=high;
int locCopy = high;
while(i>=low&&j>mid)
{
if(array[i]>array[j])
{
count += j-mid;
copy[locCopy--] = array[i--];
if(count>=1000000007)//数值过大求余
{
count%=1000000007;
}
}
else
{
copy[locCopy--] = array[j--];
}
}
for(;i>=low;i--)
{
copy[locCopy--]=array[i];
}
for(;j>mid;j--)
{
copy[locCopy--]=array[j];
}
for(int s=low;s<=high;s++)
{
array[s] = copy[s];
}
return (leftCount+rightCount+count)%1000000007;
}
}