《剑指offer》-[第5章:优化时间与空间效率-5.2:时间与空间效率的平衡]-题36:数组中的逆序对

1、问题描述

在数组中的两个数,如果前面的数大于后面的数,则这两个数组成一个逆序对。输入一个数组,求这个数组中逆序对的数量。

2、解题思路

  • 边界条件:数组为空指针或者长度小于2,输出0
  • 思路1:最简单的方法是使用双循环,第一层循环遍历数组的第1个至倒数第2个元素中的每个元素i,第二层循环遍历元素i后面的每一个元素j,比较i和j的大小,如果i>j,则逆序对的数量加1。这种方法的时间复杂度为 O ( n 2 ) O(n^{2}) O(n2)
  • 思路2:可以对归并排序算法的merge过程稍加修改,实现逆序对的计数。我们知道,归并排序的merge过程,实际上是在合并前后两个不相交的有序数组,对于两个有序数组,其逆序对存在以下规律:
    假设这两个有序数组分别是 A A A B B B A A A B B B之前),如果 A [ i ] > B [ j ] A[i]>B[j] A[i]>B[j],那么 A [ i ] A[i] A[i] B [ 0 ] . . . , B [ j − 1 ] , . . . , B [ j ] B[0]...,B[j-1],...,B[j] B[0]...,B[j1],...,B[j]构成逆序对,即逆序对的数量在原有的逆序对的基础上加 j + 1 j+1 j+1。这种方法的时间复杂度为 O ( n l o g n ) O(nlogn) O(nlogn)

3、代码实现


import java.util.ArrayList;

public class Solution {

    int count = 0;
    public int InversePairs(int [] array) {
         if(array==null||array.length==0)
        {
            return 0;
        }
        int[] copy = new int[array.length];
        for(int i=0;i<array.length;i++)
        {
            copy[i] = array[i];
        }
        int count = InversePairsCore(array,copy,0,array.length-1);//数值过大求余
        return count;
    }
     public int InversePairsCore(int[] array,int[] copy,int low,int high)
    {
        if(low==high)
        {
            return 0;
        }
        int mid = (low+high)>>1;
        int leftCount = InversePairsCore(array,copy,low,mid)%1000000007;
        int rightCount = InversePairsCore(array,copy,mid+1,high)%1000000007;
        int count = 0;
        int i=mid;
        int j=high;
        int locCopy = high;
        while(i>=low&&j>mid)
        {
            if(array[i]>array[j])
            {
                count += j-mid;
                copy[locCopy--] = array[i--];
                if(count>=1000000007)//数值过大求余
                {
                    count%=1000000007;
                }
            }
            else
            {
                copy[locCopy--] = array[j--];
            }
        }
        for(;i>=low;i--)
        {
            copy[locCopy--]=array[i];
        }
        for(;j>mid;j--)
        {
            copy[locCopy--]=array[j];
        }
        for(int s=low;s<=high;s++)
        {
            array[s] = copy[s];
        }
        return (leftCount+rightCount+count)%1000000007;
    }
   
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Albert_YuHan

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值