复现交叉熵
首先定义了函数对照公式实现了交叉熵的功能
def CrossEntropy(inputs, targets):
return np.sum(np.nan_to_num(-targets*(np.log(inputs)))
运用到项目代码中出现了detach()问题,且因为类型非variable 无法更新梯度,无法backward
由于我的项目代码使用的torch框架,内部数据类型全是tensor,而用了numpy之后的数据类型全部变成了array,遂将numpy的函数全替换为torch的函数,即可针对tensor运算
且新的变量自动全是variable类型,可顺利反向传播
实现好后运行结果出现大量的nan,无法正常运算,使用clamp限制loss计算值的范围
class CrossEntropy(nn.Module):
def __init__(self):
super(CrossEntropy, self).__init__()
def forward(self, inputs, targets):
## torch中要想实现backward就不能使用np,不能用array,只能使用tensor,只有tensor才有requires_grad参数
loss1=-targets*(torch.log(inputs)).cuda()
loss=torch.sum(loss1.clamp(min=0.0001,max=1.0))