本篇文章主要是通过python的face_recognition库来实现人脸识别,首先要谢谢参考的两个博客http://blog.csdn.net/hongbin_xu/article/details/74981819和https://www.freebuf.com/articles/terminal/158484.html
话不多说,接下来进行整个流程的说明,
安装配置
要安装face_recognition库,首先需要安装dlib,直接安装时会在安装dlib时出错,可能报错也可能会卡在那不动。因为pip在编译dlib时会出错,所以我们需要手动编译dlib再进行安装。
1、
pip install dlib
一般来说可能会报错,所以可以下载 dlib的安装包 来进行安装(cmd进入whl所在文件夹后使用pip安装)
2、安装完dlib之后即可安装face_recognition库
pip install face_recognition
调用一下库,检查是否成功导入。
3、安装opencv库
pip install opencv-python
编写人脸识别程序
代码如下
# -*- coding: UTF-8 -*-
import face_recognition
import cv2
import os
# 这是一个超级简单(但很慢)的例子,在你的网络摄像头上实时运行人脸识别
# PLEASE NOTE: This example requires OpenCV (the `cv2` library) to be installed only to read from your webcam.
# 请注意:这个例子需要安装OpenCV
# 具体的演示。如果你安装它有困难,试试其他不需要它的演示。
# 得到一个参考的摄像头# 0(默认)
video_capture = cv2.VideoCapture(0)
# 加载示例图片并学习如何识别它。
path ="images"#在同级目录下的images文件中放需要被识别出的人物图
total_image=[]
total_image_name=[]
total_face_encoding=[]
for fn in os.listdir(path): #fn 表示的是文件名
total_face_encoding.append(face_recognition.face_encodings(face_recognition.load_image_file(path+"/"+fn))[0])
fn=fn[:(len(fn)-4)]#截取图片名(这里应该把images文件中的图片名命名为为人物名)
total_image_name.append(fn)#图片名字列表
while True:
# 抓取一帧视频
ret, frame = video_capture.read()
# 发现在视频帧所有的脸和face_enqcodings
face_locations = face_recognition.face_locations(frame)
face_encodings = face_recognition.face_encodings(frame, face_locations)
# 在这个视频帧中循环遍历每个人脸
for (top, right, bottom, left), face_encoding in zip(face_locations, face_encodings):
# 看看面部是否与已知人脸相匹配。
for i,v in enumerate(total_face_encoding):
match = face_recognition.compare_faces([v], face_encoding,tolerance=0.5)
name = "Unknown"
if match[0]:
name = total_image_name[i]
break
# 画出一个框,框住脸
cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255), 2)
# 画出一个带名字的标签,放在框下
cv2.rectangle(frame, (left, bottom - 35), (right, bottom), (0, 0, 255), cv2.FILLED)
font = cv2.FONT_HERSHEY_DUPLEX
cv2.putText(frame, name, (left + 6, bottom - 6), font, 1.0, (255, 255, 255), 1)
# 显示结果图像
cv2.imshow('Video', frame)
# 按q退出
if cv2.waitKey(1) & 0xFF == ord('q'):
break
# 释放摄像头中的流
video_capture.release()
cv2.destroyAllWindows()
其次还需要在同级目录下新建一个images文件夹来进行摄像头的人脸图片对比。
代码原理如下:
1.遍历images文件中的图片
2.提取特征脸
3.摄像头每帧提取图片,提取特诊脸
4.遍历特征列表,找出符合特征脸
5.输出名字
最后,运行程序之后按q退出程序。