Description
小w 心里的火焰就要被熄灭了。
简便起见,假设小w 的内心是一棵n -1 条边,n 个节点的树。
现在你要在每个节点里放一些个灭火器,每个节点可以放任意多个。
接下来每个节点都要被分配给一个至多k 条边远的灭火器,每个灭火器最多能分配给s 个节点。
至少要多少个灭火器才能让小w 彻底死亡呢?
分析
这题一看不好做,但我们可以知道灭火器要放到深度尽量小的节点上,这样才能覆盖尽量多的点。我们可以从下到上做贪心。设
f[x][i]
表示距离第x个节点i条边的灭火器能灭火的节点总数
g[x][i]
表示距离第x个节点i条边的需灭火的节点总数
每次一定要将g[x][k]用f[x][0]填满,把距离为k,k-1的g[x],f[x],互相匹配,抵消。最后在根处把所以的g填满。
#include<cstdio>
using namespace std;
int n,s,k,x,y,tot,sum,ans,last[100005],nex[200005],to[200005],f[200005][22],g[200005][22];
void add(int x,int y)
{
to[++tot]=y;
nex[tot]=last[x];
last[x]=tot;
}
int min(int a,int b){return a<b?a:b;}
void dg(int x,int y)
{
for (int i=last[x];i;i=nex[i])
if (to[i]!=y)
{
dg(to[i],x);
for (int j=1;j<=k;j++)
{
f[x][j]+=f[to[i]][j-1];
f[x][j]=min(f[x][j],n);
g[x][j]+=g[to[i]][j-1];
}
}
g[x][0]=1;
if (g[x][k])
{
int d=(g[x][k]+s-1)/s;
f[x][0]=d*s,ans+=d;
f[x][0]=min(f[x][0],n);
}
for (int i=0;i<=k;i++)
{
int j=k-i,d=min(f[x][i],g[x][j]);
f[x][i]-=d,g[x][j]-=d;
}
for (int i=0;i<k;i++)
{
int j=k-1-i,d=min(f[x][i],g[x][j]);
f[x][i]-=d,g[x][j]-=d;
}
}
int main()
{
freopen("repulsed.in","r",stdin);
freopen("repulsed.out","w",stdout);
scanf("%d%d%d",&n,&s,&k);
for (int i=1;i<n;i++)
{
scanf("%d%d",&x,&y);
add(x,y),add(y,x);
}
dg(1,0);
for (int i=0;i<=k;i++)
{
for (int j=k;j>=0;j--)
if (i+j<=k)
{
int d=min(f[1][i],g[1][j]);
f[1][i]-=d,g[1][j]-=d;
}
}
for (int i=0;i<=k;i++) sum+=g[1][i];
ans+=(sum+s-1)/s;
printf("%d",ans);
return 0;
}