归并排序/快排-非递归版本

归并排序

思路:

  1. 设置step步长 将数组按步长划分 比如arr[0,1,2,3,4] 开始step = 1;
  2. 第一个左组[0] 和 第一个右组[1] 进行merge操作;第二个左组[2] 和 第二个右组[3] 进行merge操作;剩下的不足以划分
  3. 将step * 2 , 开始merge新的左组 和 右组,等到step = 4时 此时左组[0,1,2,3] 右组[4] 进行merge操作
  4. 判断step >= N 就可以退出循环
public static void mergeSort2(Integer[] arr) {
        if (arr == null || arr.length < 2) {
            return;
        }
        int N = arr.length;
        //步长
        int step = 1;
        while (step < N) {
            int L = 0;
            while (L < N) {
                //判断最后的数据是否能凑成左组和右组,如果 N - L < step 说明凑不到右组
                if (step >= N - L) {
                    break;
                }
                //计算中间位置
                int M = L + step - 1;
                //计算右组位置 判断右组是否满足step个元素 不足R = M + (N - M - 1)
                int R = M + Math.min(step, N - M - 1);
                merge(arr, L, M, R);
                L = R + 1;
            }
            //不能判断为step >= N /2 , 因为是向下取整,如果arr长度17 步长=8的时候就会退出,最后的16步长没有merge
            if (step > N / 2) {
                break;
            }
            step <<= 1;
        }
    }

快排

快排的思想就是递归+分治;将数组划分为小于和大于选定元素的区域,当最后局部的左组和右组是有序的,整体就是有序的。

分割数组

问题描述:

将数组分割成<=num 和 > num的两部分

public static void splitNum1(Integer[] arr) {
        int lessEqualR = -1;
        int index = 0;
        int N = arr.length;
        while (index < N) {
            if (arr[index] <= arr[N - 1]) {
                exec(arr, ++lessEqualR, index++);
            } else {
                index++;
            }
        }
    }

分割数组2

问题描述:将数组分割成<num、 =num 和 > num的三部分

public static void splitNum2(Integer[] arr) {
        int N = arr.length;
        int lessR = -1;
        int moreL = N - 1;
        int index = 0;
        // arr[N-1]
        while (index < moreL) {
            if (arr[index] < arr[N - 1]) {
                exec(arr, ++lessR, index++);
            } else if (arr[index] > arr[N - 1]) {
                exec(arr, --moreL, index);
            } else {
                index++;
            }
        }
        exec(arr, moreL, N - 1);
    }

递归版本-快排

// arr[L...R]范围上,拿arr[R]做划分值,
    // L....R < = >
    public static int[] partition(Integer[] arr, int L, int R) {
        int lessR = L - 1;
        int moreL = R;
        int index = L;
        while (index < moreL) {
            if (arr[index] < arr[R]) {
                exec(arr, ++lessR, index++);
            } else if (arr[index] > arr[R]) {
                exec(arr, --moreL, index);
            } else {
                index++;
            }
        }
        exec(arr, moreL, R);
        return new int[] { lessR + 1, moreL };
    }

    public static void process(Integer[] arr, int L, int R) {
        if (L >= R) {
            return;
        }
        int[] equalE = partition(arr, L, R);
        process(arr, L, equalE[0] - 1);
        process(arr, equalE[1] + 1, R);
    }

    public static void quickSort1(Integer[] arr) {
        if (arr == null || arr.length < 2) {
            return;
        }
        process(arr, 0, arr.length - 1);
    }

非递归版本-快排

/**
     * 需要处理的小任务:也就是需要划分数组
     */
    public static class Job {
        public int L;
        public int R;

        public Job(int left, int right) {
            L = left;
            R = right;
        }
    }

    public static void quickSort2(Integer[] arr) {
        if (arr == null || arr.length < 2) {
            return;
        }
        Stack<Job> stack = new Stack<>();
        stack.push(new Job(0, arr.length - 1));
        while (!stack.isEmpty()) {
            Job cur = stack.pop();
            int[] equals = partition(arr, cur.L, cur.R);
            if (equals[0] > cur.L) { // 有< 区域
                stack.push(new Job(cur.L, equals[0] - 1));
            }
            if (equals[1] < cur.R) { // 有 > 区域
                stack.push(new Job(equals[1] + 1, cur.R));
            }
        }
    }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值