机器学习中 embedding层原理

文章深入解析了神经网络embedding层,对比了embedding与One Hot编码,强调embedding在减少维度、表达类别关系及可视化方面的优势。通过维基百科书籍的示例,展示了embedding如何通过监督学习任务优化表示,以及其在降维后的可视化效果。
摘要由CSDN通过智能技术生成

本篇文章主要介绍以下内容:

  • 什么是 neural network embedding ?
  • 我们为什么需要使用 neural network embedding?
  • 以及 embedding 是如何自学习的?

本文中,将谈到这样一个例子,使用 neural network embedding 来表示所有维基百科上的书籍,可以通过这里访问到原作者的推荐系统项目。

Figure 1: Neural Network Embedding of all books on Wikipedia.

Embedding 和 One Hot 编码

上面说了,Embedding 是一个将离散变量转为连续向量表示的一个方式。在神经网络中,embedding 是非常有用的,因为它不光可以减少离散变量的空间维数,同时还可以有意义的表示该变量。

我们可以总结一下,embedding 有以下 3 个主要目的:

  1. 在 embedding 空间中查找最近邻&#x
  • 1
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
PCA(Principal Component Analysis)是一种经典的降维方法,在机器学习被广泛应用。其原理是通过线性变换将高维特征空间的数据映射到低维特征空间,并且保留尽可能多的数据方差。PCA通过计算协方差矩阵的特征值和特征向量,得到各个主成分(即特征向量),然后根据选择的主成分个数进行特征投影,实现数据降维。 KPCA(Kernel Principal Component Analysis)是PCA的一种非线性扩展方法。KPCA使用核技巧,将数据映射到高维特征空间,在高维空间进行PCA操作。通过使用核函数计算内积,可以将非线性问题转化为线性问题。KPCA通过计算核矩阵的特征值和特征向量,得到非线性空间的主成分,并将数据投影到主成分上进行降维处理。 t-SNE(t-Distributed Stochastic Neighbor Embedding)是一种数据可视化和降维技术,主要用于发现数据的结构和聚类。t-SNE通过考虑相似度的概率分布来映射高维数据到二维或三维空间,保留数据之间的相对距离。t-SNE通过计算高维数据和低维映射数据间的相似度,利用梯度下降方法最小化两者之间的KL散度,从而得到低维空间的数据表示。 总结来说,PCA和KPCA是机器学习常用的降维方法,可以通过线性或非线性映射将高维数据降低到低维空间。而t-SNE主要用于数据可视化和聚类,能够保留数据之间的相对距离关系。这些方法都在机器学习起到了重要的作用,帮助我们处理高维数据和理解数据的结构。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值