九章算术方程术

这篇博客介绍了古代中国的九章算术方程术,通过具体的数学问题展示了古人的智慧。博主用现代数学语言重新表述了问题,并感叹古人在数学上的成就。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

九章算术方程术

今天看到一篇关于九章算术方程术的文章,看得瞠目结舌,叹为观止!中国古人果真是太厉害了,现博文记录。
方程:今有上禾三秉,中禾二秉,下禾一秉,实三十九斗;上禾二秉,中禾三秉,下禾一秉,实三十四斗;上禾一秉,中禾二秉,下禾三秉,实二十六斗;问上、中、下禾实一秉各几何?

答曰:上禾一秉,九斗、四分斗之一,中禾一秉,四斗、四分斗之一,下禾一秉,二斗、四分斗之三。

术曰:置上禾三秉,中禾二秉,下禾一秉,實三十九斗,於右方。中、左禾列如右方。以右行上禾遍乘中行而以直除。又乘其次,亦以直除。然以中行中禾不盡者遍乘左行而以直除。左方下禾不盡者,上為法,下為實。實即下禾之實。求中禾,以法乘中行下實,而除下禾之實。餘如中禾秉數而一,即中禾之實。求上禾亦以法乘右行下實,而除下禾、中禾之實。餘如上禾秉數而一,即上禾之實。實皆如法,各得一斗。

翻译:今有上等稻3捆、中等稻2捆、下等稻1捆,共打出39斗米;有上等稻2捆、中等稻3捆、下等稻1捆,共打出34斗米;有上等稻1捆、中等稻2捆、下等稻3捆,共打出26斗米。问上等稻、中等稻、下等稻各1捆能打出多少斗米?现在我们用x,y,z分别代替上等稻、中等稻、下等稻各1捆能打出的斗米数。有

3x+2y+z=392x+3y+z=34x+2y+3z=26 { 3 x + 2 y + z = 39 2 x + 3 y + z = 34 x + 2 y + 3 z = 26

九章算术解法:将方程组的系数和值从右往左排列:【置上禾三秉,中禾二秉,下禾一秉,實三十九斗,於右方。中、左禾列如右方。】得到
123262313432139 1 2 3 2 3 2 3 1 1 26 34 39

【以右行上禾遍乘中行而以直除。又乘其次,亦以直除。】:中行各元素乘以右行的上禾,然后中行各元素减掉上行对应的元素,直到中行上禾为0;左行各元素乘以右行的上禾,然后左行各元素减掉右行对应的元素,直到左行上禾为0。
1232623134321393697869310232
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值