神经网络笔记1

这篇博客介绍了神经网络中的激活函数,包括Sigmoid、Tanh、ReLU及其变体Leaky ReLU和Maxout函数。Sigmoid和Tanh因饱和问题已较少使用,而ReLU因其加速收敛和线性特性成为首选,但存在死亡ReLU问题。Leaky ReLU和Maxout作为改进版,尝试解决ReLU的问题,Maxout是ReLU的推广,但参数较多。建议使用ReLU并配合正则化避免过拟合。
摘要由CSDN通过智能技术生成

1. 快速简介

  非线性函数在神经网络的计算上是至关重要的,如果略去这一步,那么两个矩阵将会合二为一,对于分类的评分计算将重新变成关于输入的线性函数。

2. 作为线性分类器的单个神经元

  一个单独的神经元可以用来实现一个二分类分类器,比如二分类的Softmax或者SVM分类器。在SVM/Softmax的例子中,正则化损失从生物学角度可以看做逐渐遗忘,因为它的效果是让所有突触权重 w 在参数更新过程中逐渐向着0变化。

2.1 二分类Softmax分类器

  可以把 σ(Σiwixi+b) 看做其中一个分类的概率 P(yi=1|xi;w) ,其他分类的概率为 P(y

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值