1. 快速简介
非线性函数在神经网络的计算上是至关重要的,如果略去这一步,那么两个矩阵将会合二为一,对于分类的评分计算将重新变成关于输入的线性函数。
2. 作为线性分类器的单个神经元
一个单独的神经元可以用来实现一个二分类分类器,比如二分类的Softmax或者SVM分类器。在SVM/Softmax的例子中,正则化损失从生物学角度可以看做逐渐遗忘,因为它的效果是让所有突触权重 w 在参数更新过程中逐渐向着0变化。
2.1 二分类Softmax分类器
可以把
非线性函数在神经网络的计算上是至关重要的,如果略去这一步,那么两个矩阵将会合二为一,对于分类的评分计算将重新变成关于输入的线性函数。
一个单独的神经元可以用来实现一个二分类分类器,比如二分类的Softmax或者SVM分类器。在SVM/Softmax的例子中,正则化损失从生物学角度可以看做逐渐遗忘,因为它的效果是让所有突触权重 w 在参数更新过程中逐渐向着0变化。
可以把