机器学习_课程笔记_完结
文章平均质量分 92
独孤呆博
机器学习学习者,分享学习心得,欢迎大家分享讨论~
展开
-
结构学习:序列标注
以序列标注为背景,介绍了隐马尔科夫模型,条件随机场模型原创 2018-01-22 11:52:17 · 13202 阅读 · 6 评论 -
强化学习:皮毛简介
1. 强化学习情景 强化学习的情景如下图所示 有一个 agent ,他在一个 environment 中,观察到一个值 Observation 执行一个 action ,这个 action 改变了环境的值,agent 得到一个对应的奖励。 以围棋为例,如下图所示 他观察目前的棋盘,落一个子,然后棋盘的环境发生了改变,如果最后赢了这盘棋就会得到奖励1,如果输了就会得到奖励-1原创 2018-01-24 21:48:41 · 397 阅读 · 0 评论 -
结构学习:结构型支持向量机
结构型SVM详细介绍原创 2018-01-20 23:27:26 · 5512 阅读 · 1 评论 -
19.迁移学习
National Taiwan University (NTU)李宏毅老师的《Machine Learning》的学习笔记,因此在全文对视频出现的内容多次引用。初出茅庐,学艺不精,有不足之处还望大家不吝赐教。 欢迎大家在评论区多多留言互动~~~~0. 相关链接 迁移学习发展至今天有了很大的进展,对其中比较经典的综述进行了相关总结《A Survey on Transfer原创 2017-12-10 14:14:35 · 1503 阅读 · 0 评论 -
结构学习:线性模型
介绍结构线性算法需要解决的三个问题,以及模型 F(x,y) 的训练方法。原创 2018-01-19 20:19:56 · 921 阅读 · 0 评论 -
结构学习:介绍
简单介绍什么是结构学习,结构学习的应用,统一框架,与概率模型之间的联系,与深度学习之间的联系原创 2018-01-19 10:32:54 · 2838 阅读 · 0 评论 -
无监督学习:生成模型
1. 生成模型 2016年PixelRNN,2014年Variational Autoencoder (VAE),2013年Generative Adversarial Network (GAN)。原创 2018-01-18 23:09:43 · 7119 阅读 · 6 评论 -
支持向量机
谈论了支持向量机的损失函数的选择,核函数及核技巧,最后介绍了深度学习与SVM的联系和区别。原创 2018-01-18 15:45:50 · 316 阅读 · 0 评论 -
无监督学习:深度自编码器
主要讲述深度自编码器的相关内容,实现方式主要NN及CNN两种方式,以及深度自编码器的几个应用方向。原创 2018-01-16 21:15:43 · 12386 阅读 · 1 评论 -
无监督学习:邻域嵌入方法(Neighbor Embedding)
1. 流形学习 (Manifold Learning) 流形学习(manifold learning)是机器学习、模式识别中的一种方法,在维数约简方面具有广泛的应用。它的主要思想是将高维的数据映射到低维,使该低维的数据能够反映原高维数据的某些本质结构特征。流形学习的前提是有一种假设,即某些高维数据,实际是一种低维的流形结构嵌入在高维空间中。流形学习的目的是将其映射回低维空间中,揭示其本质[1原创 2018-01-16 18:17:20 · 6408 阅读 · 0 评论 -
无监督学习:词嵌入or词向量(Word Embedding)
National Taiwan University (NTU)李宏毅老师的《Machine Learning》的学习笔记,因此在全文对视频出现的内容多次引用。初出茅庐,学艺不精,有不足之处还望大家不吝赐教。 欢迎大家在评论区多多留言互动~~~~1. 为什么要使用词嵌入(Word Embedding) 在词嵌入之前往往采用 1-of-N Encoding 的...原创 2018-01-16 14:50:52 · 7120 阅读 · 2 评论 -
无监督学习:线性降维
无监督学习可以大概分为两类:一类是化繁为简,主要是聚类和降维;另一类是无中生有,主要是生成算法。在这里我们主要介绍聚类和降维部分。1. 聚类算法1.1 K-means聚类 略1.2 层次聚合聚类(Hierarchical Agglomerative Clustering,HAC) 略1.3 分布式表征 有的时候仅仅用一类标签没有办法将数据的类别完整原创 2018-01-15 21:11:46 · 2877 阅读 · 0 评论 -
循环神经网络(Recurrent Neural Network,RNN)
RNN的原理及应用原创 2018-01-23 20:48:09 · 10548 阅读 · 1 评论 -
半监督学习
半监督学习笔记原创 2018-01-15 16:28:53 · 20101 阅读 · 4 评论 -
模型集成(Ensemble)
1. 模型集成的框架 模型集成的框架是这样的,有很多种分类器,它们应该是不同的,可以是不同的机器学习方法,也可以是相同的方法。但是它们应该是互补的,也就是说不是互相相似的。没有重分类器都应该有自己的位置。2. Ensemble:Bagging 在本节中会以某一种机器学习方法举例,但是实际上这种集成方法适用于任何的机器学习方法。2.1 回顾偏置与方差的关系 偏置与方原创 2018-01-24 15:11:49 · 25450 阅读 · 0 评论