1. 二叉树
1.1 二叉树的定义
二叉树(Binary Tree)是n(n>=0)个结点的有限集合,该集合或者为空集(空二叉树),或者由一个根结点和两棵互不相交的、分别称为根结点的左子树和右子树的二叉树组成。
1.2 二叉树的特点
每个结点最多有两棵子树,所以二叉树中不存在度大于2的结点。(注意:不是都需要两棵子树,而是最多可以是两棵,没有子树或者有一棵子树也都是可以的。)左子树和右子树是有顺序的,次序不能颠倒。即使树中某结点只有一棵子树,也要区分它是左子树还是右子树,下面是完全不同的二叉树:
1.3 二叉树的五种基本形态
空二叉树;只有一个根结点;根结点只有左子树;根结点只有右子树;根结点既有左子树又有右子树。
拥有三个结点的普通树只有两种情况:两层或者三层。但对于二叉树来说,由于要区分左右,所以就演变成五种形态:
1.4 特殊二叉树
斜树:顾名思义,斜树是一定要斜的,但一定是朝同一侧倾斜。
满二叉树:在一棵二叉树中,如果所有分支结点都存在左子树和右子树,并且所有叶子都在同一层上,这样的二叉树称为满二叉树,如下图所示
满二叉树的特点有:(1)叶子只能出现在最下一层;(2)非叶子结点的度一定是2;(3)在同样深度的二叉树中,满二叉树的结点个数一定最多,同时叶子也是最多。
完全二叉树:对一棵具有n个结点的二叉树按层序编号,如果编号为i(1<=i<=n)的结点与同样深度的满二叉树中编号为i的结点位置完全相同,则这棵二叉树称为完全二叉树。
完全二叉树的特点有:(1)叶子结点只能出现在最下两层;(2)最下层的叶子一定集中在左部连续位置;(3)倒数第二层,若有叶子结点,一定都在右部连续位置;(4)如果结点度为1,则该结点只有左孩子;(5)同样结点树的二叉树,完全二叉树的深度最小。注意:满二叉树一定是完全二叉树,但完全二叉树不一定是满二叉树。
以下的这些树都不是完全二叉树
2. 二叉树的五个性质
性质 1 :在二叉树的第i层上至多有2^(i-1)个结点(i>=1);
性质2:深度为k的二叉树至多有2^k-1个结点(k>=1);
性质3:对任何一棵二叉树T,如果其终端结点(度为0的结点)数为n0,度为2的结点数为n2,则n0=n2+1;
性质4:具有n个结点的完全二叉树的深度为⌊log₂n⌋+1;
性质5:如果对一棵有n个结点的完全二叉树(其深度为⌊log₂n⌋+1)的结点按层序编号,对任一结点i(1<=i<=n)有以下性质:如果i = 1,则结点 i 是二叉树的根,无双亲;如果i > 1,则其双亲是结点⌊i/2⌋;如果2i > n,则结点 i 无做左孩子(结点 i 为叶子结点);否则其左孩子是结点2i;如果2i+1 > n,则结点 i 无右孩子;否则其右孩子是结点2i+1