结构学习:介绍

结构学习关注输入或输出有结构的数据,如语句、列表和边界框。它提供了一个统一框架,应用于目标检测、摘要生成和检索问题。在训练中,通过函数F评估输入与输出的匹配度,测试时穷举所有可能找到最佳结果。结构学习与概率模型和DNN紧密相关,解决相似度估计、穷举优化和模型学习等问题。
摘要由CSDN通过智能技术生成

1. 什么是结构学习

  所谓的结构学习就是输入或者输出是有结构的数据,比如说语句、列表、树和识别时的边界框(bounding box)。而在之前的学习之中,输入和输出都是向量。在结构学习中,我们需要学习的是一个函数 F 。如下图所示,它的输入是一种形式,而输出是另一种形式。

2. 结构学习的应用方向

  主要的应用方向如下

3. 结构学习的统一框架

  结构学习具有一个统一的框架,可以表示为下图中的形式

在训练的过程中,我们希望找到这样的一个函数 f ,用它来评价我们的输入与我们的输出目前有多匹配。在测试的过程中个,给定了一个

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值