在GPU服务器中部署roop实践

本文主要记录在GPU服务器中部署roop实现图片视频换脸功能

python环境准备

安装Anaconda3

1、cd ~
2、wget https://repo.anaconda.com/archive/Anaconda3-2024.02-1-Linux-x86_64.sh
3、bash Anaconda3-2024.02-1-Linux-x86_64.sh
4、一直按 Enter,出现的yes/no,都写yes

创建虚拟环境以及下载一些依赖

1、创建虚拟环境:conda create --name roopenv python=3.10.6
2、激活虚拟环境:conda activate roopenv
3、升级setuptools: pip install --upgrade pip setuptools wheel (后面install项目依赖时,安装basicsr的时候要求PEP 517,如果已经是PEP 517,忽略忽略此步骤)
4、yum install mesa-libGL.x86_64 (roop项目中使用到了libGL.so,如果已经安装,忽略此步骤)

部署roop项目

1、git clone https://github.com/s0md3v/roop.git
在这里插入图片描述

2、修改requirements.txt文件中的第一行【很有必要】
将 https://download.pytorch.org/whl/cu118 替换成 https://mirrors.aliyun.com/pypi/simple
如果不修改,在下载依赖的时候会很慢,并且可能会超时,导致无法下载完成
在这里插入图片描述

上传模型文件

1、获取模型文件:https://pan.baidu.com/s/1OdYRvOptjFwju3EW812dBw?pwd=roop
解压后如下
在这里插入图片描述

2、上传到指定目录下
2.1、roop文件夹下的所有文件夹直接复制到项目主目录下
在这里插入图片描述
2.2、root文件夹下的所有文件夹上传到linux中 root文件夹下
在这里插入图片描述

运行项目

1、安装项目依赖:pip install -r requirements.txt --use-pep517 --verbose
2、运行示例

命令1:

python run.py --execution-provider cuda --temp-frame-format jpg  -s /www/wwwroot/myroop/roop/example/zbs.jpg -t /www/wwwroot/myroop/roop/example/a.mp4 -o /www/wwwroot/myroop/roop/example/a100.mp4

命令2:

python run.py --execution-provider cuda --temp-frame-format jpg --frame-processor face_swapper face_enhancer  -s /www/wwwroot/myroop/roop/example/zbs.jpg -t /www/wwwroot/myroop/roop/example/a.mp4 -o /www/wwwroot/myroop/roop/example/a200.mp4

命令3:

python run.py --execution-provider cuda --temp-frame-format jpg --frame-processor face_swapper face_enhancer --similar-face-distance 1.5 -s /www/wwwroot/myroop/roop/example/zbs.jpg -t /www/wwwroot/myroop/roop/example/a.mp4 -o /www/wwwroot/myroop/roop/example/a300.mp4

3个命令不同的参数说明:
–temp-frame-format jpg 图片保存jpg格式
–frame-processor face_swapper face_enhancer 视频高清化处理
–similar-face-distance 1.5 处理脸部跳闪
-s 是源图片(要替换成的头像路径)
-t 是目标图片或视频(被替换的,资源路径)
-o 是输出路径

### 如何安装 Stable Diffusion 的 Roop 插件 #### 准备工作 为了成功安装和使用 Roop 插件,需要先完成 Stable Diffusion WebUI 的基本环境搭建。这通常涉及 Python 和 PyTorch 的安装以及依赖库的管理。如果尚未设置好基础环境,请参考官方文档或其他教程来完成初始配置[^1]。 #### 安装 InsightFace 库 在开始之前,需确保已安装 `insightface` 库,这是 Roop 插件正常工作的必要条件之一。通过命令提示符进入 Stable Diffusion WebUI 所在目录后,运行以下命令以安装指定版本的 `insightface`: ```bash pip install insightface==0.7.3 ``` 此操作会下载并安装所需的机器学习模型文件,用于面部检测与分析功能[^2]。 #### 配置开发工具链 部分用户可能遇到编译错误或缺少特定组件的情况,在这种情况下建议安装 Microsoft Visual Studio 并勾选 C++ 工具集等相关选项。这一过程可以通过查看具体教学视频辅助理解,例如提到的 B 站资源能够提供直观指导[^3]。 #### 下载并启用 Roop 插件 访问 GitHub 或其他可信平台获取最新版 roop 脚本文件夹,并将其放置于 webui 根目录下的 extensions 文件夹内。随后重启应用程序即可加载新功能模块[^4]。 #### 解决常见问题 对于初次使用者而言,可能会面临各种未知挑战比如脚本冲突或者路径设定失误等问题。此时保持耐心非常重要,逐一排查错误日志寻找解决方案;同时也可以向社区寻求帮助分享经验教训[^5]。 ```python # 示例代码片段展示如何验证插件是否生效 import os from modules import script_callbacks, shared def on_ui_settings(): section = ('roop', 'Roop') shared.opts.add_option('use_roop_model', shared.OptionInfo(True, "Enable Roop Model", component=shared.CheckboxComponent)) script_callbacks.on_ui_settings(on_ui_settings) ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值