线性回归的简洁实现

《动手学深度学习pytorch》部分学习笔记,仅用作自己复习。

线性回归的简洁实现

随着深度学习框架的发展,开发深度学习应⽤用变得越来越便便利。实践中,我们通常可以⽤比上⼀节更简洁的代码来实现同样的模型。(说白了就是使用已经集成的搭建自己网络)

生成数据集

⽣成与上一节中相同的数据集。其中 features 是训练数据特征, labels 是标签。

num_inputs = 2
num_examples = 1000
true_w = [2, -3.4]
true_b = 4.2
features = torch.tensor(np.random.normal(0, 1, (num_examples,
num_inputs)), dtype=torch.float)
labels = true_w[0] * features[:, 0] + true_w[1] * features[:, 1] +
true_b
labels += torch.tensor(np.random.normal(0, 0.01,
size=labels.size()), dtype=torch.float)

 读取数据

PyTorch提供了 data 包来读取数据。由于 data 常⽤作变量名,我们将导入的 data 模块⽤ Data 代替。在每⼀次迭代中,我们将随机读取包含10个数据样本的⼩批量。

import torch.utils.data as Data
batch_size = 10
# 将训练数据的特征和标签组合
dataset = Data.TensorDataset(features, labels)
# 随机读取⼩小批量量
data_iter = Data.DataLoader(dataset, batch_size, shuffle=True)

这⾥ data_iter 的使⽤跟上⼀节中的⼀样。让我们读取并打印第⼀个⼩批量数据样本。

for X, y in data_iter:
print(X, y)
break

输出:

tensor([[-2.7723, -0.6627],
[-1.1058, 0.7688],
[ 0.4901, -1.2260],
[-0.7227, -0.2664],
[-0.3390, 0.1162],
[ 1.6705, -2.7930],
[ 0.2576, -0.2928],
[ 2.0475, -2.7440],
[ 1.0685, 1.1920],
[ 1.0996, 0.5106]])
tensor([ 0.9066, -0.6247, 9.3383, 3.6537, 3.1283, 17.0213,5.6953, 17.6279,2.2809, 4.6661])

定义模型

在上⼀节从零开始的实现中,我们需要定义模型参数,并使用它们⼀步步描述模型是怎样计算的。当模型结构变得更复杂时,这些步骤将变得更繁琐。其实,PyTorch提供了大量预定义的层,这使我们只需关注使⽤哪些层来构造模型。下⾯将介绍如何使⽤用PyTorch更更简洁地定义线性回归。

⾸先,导⼊ torch.nn 模块。实际上,“nn”是neural networks(神经⽹网络)的缩写。顾名思义,该模块定义了⼤量神经网络的层。之前我们已经⽤过了了 autograd ,⽽ nn 就是利⽤ autograd 来定义模型。 nn 的核⼼数据结构是 Module ,它是一个抽象概念,既可以表示神经网络中的某个层(layer),也可以表示⼀个包含很多层的神经网络。在实际使⽤用中,最常见的做法是继承 nn.Module ,撰写自己的⽹络层。⼀个 nn.Module 实例应该包含⼀些层以及返回输出的前向传播(forward)方法。下⾯先来看看如何⽤用 nn.Module 实现⼀个线性回归模型。

class LinearNet(nn.Module):
    def __init__(self, n_feature):
        # 这里的LinearNet是随着class类写的
        super(LinearNet, self).__init__()
        # 这里已经定义了是线性网络了
        self.linear = nn.Linear(n_feature, 1)
    # forward 定义前向传播
    def forward(self, x):
        y = self.linear(x)
        return y
net = LinearNet(num_inputs)
print(net) # 使⽤print可以打印出⽹络的结构

输出:LinearNet((linear): Linear(in_features=2, out_features=1, bias=True))

事实上我们还可以⽤ nn.Sequential 来更加⽅便地搭建网络, Sequential 是⼀个有序的容器,网络层将按照在传入 Sequential 的顺序依次被添加到计算图中。

# 写法⼀
net = nn.Sequential(
    nn.Linear(num_inputs, 1)
    # 此处还可以传⼊其他层
    )
# 写法⼆
net = nn.Sequential()
net.add_module('linear', nn.Linear(num_inputs, 1))
# net.add_module ......
# 写法三
from collections import OrderedDict
net = nn.Sequential(OrderedDict([
         ('linear', nn.Linear(num_inputs, 1))
         # ......
         ]))
print(net)
print(net[0])

输出:Sequential((linear): Linear(in_features=2, out_features=1, bias=True))
Linear(in_features=2, out_features=1, bias=True)

可以通过 net.parameters() 来查看模型所有的可学习参数,此函数将返回⼀个⽣成器。

for param in net.parameters():
    print(param)

输出:

Parameter containing:
tensor([[-0.0277, 0.2771]], requires_grad=True)
Parameter containing:
tensor([0.3395], requires_grad=True)

作为⼀个单层神经网络,线性回归输出层中的神经元和输⼊层中各个输入完全连接。因此,线性回归的输出层⼜叫全连接层
注意: torch.nn 仅支持输⼊一个batch的样本不支持单个样本输入,如果只有单个样本,可使用 input.unsqueeze(0) 来添加⼀维。

初始化模型参数

在使⽤用 net 前,我们需要初始化模型参数,如线性回归模型中的权重和偏差。PyTorch在 init 模块中提供了了多种参数初始化方法。这里的 init 是 initializer 的缩写形式。我们通过 init.normal_ 将权重参数每个元素初始化为随机采样于均值为0、标准差为0.01的正态分布。偏差会初始化为零。

from torch.nn import init
init.normal_(net[0].weight, mean=0, std=0.01)
init.constant_(net[0].bias, val=0) # 也可以直接修改bias的data:
net[0].bias.data.fill_(0)

定义损失函数

PyTorch在 nn 模块中提供了各种损失函数,这些损失函数可看作是⼀种特殊的层,PyTorch也将这些损失函数实现为 nn.Module 的⼦类。我们现在使用它提供的均方误差损失作为模型的损失函数。

loss = nn.MSELoss() 

定义优化算法

同样,我们也⽆须自⼰实现⼩批量随机梯度下降算法。 torch.optim 模块提供了很多常用的优化算法⽐如SGD、Adam和RMSProp等。下⾯我们创建一个⽤于优化 net 所有参数的优化器实例,并指定学习率为0.03的⼩批量随机梯度下降(SGD)为优化算法。

import torch.optim as optim
optimizer = optim.SGD(net.parameters(), lr=0.03)
print(optimizer)

输出:SGD (
Parameter Group 0
dampening: 0
lr: 0.03
momentum: 0
nesterov: False
weight_decay: 0
)

我们还可以为不同⼦⽹络设置不同的学习率,这在finetune时经常用到。例:

optimizer =optim.SGD([
# 如果对某个参数不指定学习率,就使用最外层的默认学习率
{'params': net.subnet1.parameters()}, # lr=0.03
{'params': net.subnet2.parameters(), 'lr': 0.01}
], lr=0.03)

有时候我们不想让学习率固定成⼀个常数,那如何调整学习率呢?主要有两种做法。
一种是修改 optimizer.param_groups 中对应的学习率。
另⼀种是更简单也是较为推荐的做法——新建优化器,由于optimizer⼗分轻量级,构建开销很小,故而可以构建新的optimizer。但是后者对于使⽤动量的优化器(如Adam),会丢失动量等状态信息,可能会造成损失函数的收敛出现震荡等情况。

# 调整学习率
for param_group in optimizer.param_groups:
    param_group['lr'] *= 0.1 # 学习率为之前的0.1倍

训练模型

在使⽤Gluon训练模型时,我们通过调⽤ optim 实例的 step 函数来迭代模型参数。按照⼩批量随机梯度下降的定义,我们在 step 函数中指明批量⼤小,从⽽对批量中样本梯度求平均。

num_epochs = 3
for epoch in range(1, num_epochs + 1):
    for X, y in data_iter:
        output = net(X)
        l = loss(output, y.view(-1, 1))
        optimizer.zero_grad() # 梯度清零,等价于net.zero_grad()
        l.backward() # 反向传播
        optimizer.step() # 这一步是对模型参数的优化
    print('epoch %d, loss: %f' % (epoch, l.item()))

复习参考

⽤ view() 来改变 Tensor 的形状:

y = x.view(15)
z = x.view(-1, 5) # -1所指的维度可以根据其他维度的值推出来
print(x.size(), y.size(), z.size())


输出:torch.Size([5, 3]) torch.Size([15]) torch.Size([3, 5])
注意 view() 返回的新tensor与源tensor共享内存(其实是同⼀个tensor),也即更改其中的一个,另外⼀个也会跟着改变。(顾名思义,view仅仅是改变了了对这个张量的观察角度)

输出:

epoch 1, loss: 0.000457
epoch 2, loss: 0.000081
epoch 3, loss: 0.000198

下⾯面我们分别⽐较学到的模型参数和真实的模型参数。我们从 net 获得需要的层,并访问其权重( weight )和偏差( bias )。学到的参数和真实的参数很接近。

dense = net[0]
print(true_w, dense.weight)
print(true_b, dense.bias)

输出:

[2, -3.4] tensor([[ 1.9999, -3.4005]])
4.2 tensor([4.2011])

小结
使⽤用PyTorch可以更简洁地实现模型。
torch.utils.data 模块提供了有关数据处理的⼯具, torch.nn 模块定义了⼤量神经网络的层, torch.nn.init 模块定义了各种初始化方法, torch.optim 模块提供了模型参数初始化的各种⽅法。

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Clark-dj

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值