吴恩达深度学习笔记
文章平均质量分 94
# 吴恩达深度学习笔记
Clark-dj
唯有扎下心来做事情学东西才是硬道理!
博客都是平时的一些学习笔记,很多都是自学,难免会有错误和不足之处,望留言指出。一些分享若有侵权,马上删除。
展开
-
吴恩达深度学习课程之第一门课 神经网络和深度学习 第一周课程笔记
一、 第一周 : 深度学习引言1.1 欢迎(Welcome)什么是深度学习,深度学习能做些什么事情?1. 深度学习改变了传统互联网业务,例如如网络搜索和广告。2. 深度学习同时也使得许多新产品和企业以很多方式帮助人们,从获得更好的健康关注。应用:一个方面就是读取 X 光图像,到生活中的个性化教育,到精准化农业,甚至到驾驶汽车以及其它一些方面。如果你想要学习深度学习的这些工具,并应用它们来做这些令人窒息的操作AI 是最新的电力,大约在一百年前,我们社会的电气化改变了每个主要行.原创 2020-06-29 19:32:59 · 495 阅读 · 0 评论 -
吴恩达深度学习课程之第一门课 神经网络和深度学习 第二周课程笔记一
本文参考黄海广主编针对吴恩达深度学习课程DeepLearning.ai 《深度学习课程 笔记 (V5.1 )》第二周:神经网络的编程基础 (Basics of Neural Network programming)2.1 二分类(Binary Classification)学习神经网络的基础知识,在神经网络的计算中,通常先有一个叫做前向暂停(forward pause)或叫做前向传播(foward propagation)的步骤,接着有一个叫做反向暂停(backward pause) 或叫做反原创 2020-07-04 13:03:58 · 536 阅读 · 0 评论 -
吴恩达深度学习课程之第一门课 神经网络和深度学习 第二周课程笔记二
第二周:神经网络的编程基础 (Basics of Neural Network rogramming)2.9 逻辑回归中的梯度下降(Logistic Regression GradientDescent )怎样通过计算偏导数来实现逻辑回归的梯度下降算法。它的关键点是几个重要公式,其作用是用来实现逻辑回归中梯度下降算法。使用计算图对梯度下降算法进行计算。假设样本只有两个特征x1 和x2 ,为了计算z,我们需要输入参数w1 、w2 和b,除此之外还有特征值x1 和x2 。因此z的计算...原创 2020-07-06 10:01:30 · 318 阅读 · 1 评论 -
吴恩达深度学习课程之第一门课 神经网络和深度学习 第三周课程笔记
本文参考黄海广主编针对吴恩达深度学习课程DeepLearning.ai 《深度学习课程 笔记 (V5.1 )》第三周:浅层神经网络3.1 神经网络概述(Neural Network Overview)学习如何实现一个神经网络。快速浏览一下如何实现逻辑回归神经网络。神经网络:...原创 2020-07-06 16:00:11 · 706 阅读 · 0 评论 -
吴恩达深度学习课程之第一门课 神经网络和深度学习 第四周课程笔记
本文参考黄海广主编针对吴恩达深度学习课程DeepLearning.ai 《深度学习课程 笔记 (V5.1 )》第四周:深层神经网络 (Deep Neural Networks)4.1 深层神经网络(Deep L-layer neural network )复习下前三周的课的内容:1.逻辑回归,结构如下图左边。一个隐藏层的神经网络,结构下图右边注意,神经网络的层数是这么定义的: 从左到右,由 0 开始定义 ,比如上边右图,x1 、x2 、x3 ,这层是第 0 层,这层左边的隐藏层是..原创 2020-07-14 15:50:50 · 300 阅读 · 0 评论 -
吴恩达深度学习课程之第二门课 改善深层神经网络 第一周课程笔记
第一周:深度学习的实用层1.1 训练,验证,测试集(Train / Dev / Test sets )在配置训练、验证和测试数据集的过程中做出正确决策会在很大程度上帮助大家创建高效的神经网络。训练神经网络时,我们需要做出很多决策,例如:神经网络分多少层每层含有多少个隐藏单元 学习速率是多少各层采用哪些激活函数对于很多应用系统,即使是经验丰富的深度学习行家也不太可能开始就预设出最匹配的超级参数,所以说,应用深度学习是一个典型的迭代过程,需要多次循环往复,才能为应用程序找到一个称心的...原创 2020-07-15 17:40:38 · 954 阅读 · 0 评论 -
吴恩达深度学习课程之第二门课 改善深层神经网络 第二周:优化算法 (Optimization algorithms)
本文参考黄海广主编针对吴恩达深度学习课程DeepLearning.ai 《深度学习课程 笔记 (V5.1 )》第二周:优化算法 (Optimization algorithms)2.1 Mini-batch 梯度下降(Mini-batch gradient descent )机器学习的应用是一个高度依赖经验的过程,伴随着大量迭代的过程,你需要训练诸多模型,才能找到合适的那一个,所以,优化算法能够帮助你快速训练模型。深度学习没有在大数据领域发挥最大的效果,我们可以利用一个巨大的数据集来训练神经原创 2020-07-25 18:52:55 · 503 阅读 · 0 评论 -
吴恩达深度学习课程之第二门课 改善深层神经网络 第 三 周 超 参 数 调 试 、 Batch 正 则 化 和 程 序 框 架
第 三 周 超 参 数 调 试 、 Batch 正 则 化 和 程 序 框 架( Hyperparameter tuning)3.1 调试处理(Tuning process )神经网络的改变会涉及到许多不同超参数的设置。现在,对于超参数而言,你要如何找到一套好的设定呢?分享一些指导原则,一些关于如何系统地组织超参调试过程的技巧。红色最重要,橙色第二重要,紫色第三重要,第三行可以固定关于训练深度最难的事情之一是你要处理的参数的数量,从学习速率到 Momentum(动量梯度下降法)的参数。原创 2020-07-27 16:13:59 · 458 阅读 · 0 评论 -
吴恩达深度学习课程之第三门课 结构化机器学习项目 第一周 机器学习( ML )策略
本文参考黄海广主编针对吴恩达深度学习课程DeepLearning.ai 《深度学习课程 笔记 (V5.1 )》第一周 机器学习( ML )策略(1 1 )( ML strategy (1 1 ))1.1 为什么是 ML 策略?(Why ML Strategy?)如何构建你的机器学习项目也就是说机器学习的策略。学习如何更快速高效地优化你的机器学习系统。例子:假设调试猫分类器,经过一段时间的调整,系统达到了 90%准确率,但对你的应用程序来说还不够好。你可能有很多想法去改善你的系统,比如:.原创 2020-07-29 15:48:26 · 596 阅读 · 0 评论 -
吴恩达深度学习课程之第三门课 结构化机器学习项目 第二周:机器学习策略(2 2 )
本文参考黄海广主编针对吴恩达深度学习课程DeepLearning.ai 《深度学习课程 笔记 (V5.1 )》第二周:机器学习策略(2 2 )2.1 进行误差分析(Carrying out error analysis )原创 2020-07-30 16:24:26 · 546 阅读 · 0 评论 -
吴恩达深度学习课程之第四门课 卷积神经网络 第一周 卷积神经网络 详细版
吴恩达 第四门课 卷积神经网络 笔记一1.1 计算机视觉一、卷积原因在应用计算机视觉时要面临一个挑战,就是数据的输入可能会非常大。在参数大量的情况下,难以获得足够的数据来防止神经网络发生过拟合和竞争需求,要处理包含 30 亿参数的神经网络,巨大的内存需求让人不太能接受。但对于计算机视觉应用来说,你肯定不想它只处理小图片,你希望它同时也要能处理大图。为此,你需要进行卷积计算,它是卷积...原创 2020-04-04 16:43:55 · 1528 阅读 · 2 评论 -
吴恩达深度学习课程之第四门课 卷积神经网络 第二周 深度卷积网络
2.3 残差网络(Residual Networks (ResNets)非常非常深的神经网络是很难训练的,因为存在梯度消失和梯度爆炸问题。这节课我们学习跳跃连接(Skip connection),它可以从某一层网络层获取激活,然后迅速反馈给另外一层,甚至是神经网络的更深层。我们可以利用跳跃连接构建能够训练深度网络的ResNets,有时深度能够超过 100 层,让我们开始吧。ResNet...原创 2020-04-09 18:44:01 · 961 阅读 · 0 评论 -
吴恩达深度学习课程之第四门课 卷积神经网络 第三周 目标检测
3.1 目标定位(Object localization)我们学习的主要内容是对象检测,它是计算机视觉领域中一个新兴的应用方向,相比前两年,它的性能越来越好。在构建对象检测之前,我们先了解一下对象定位。图片分类任务我们已经熟悉了,就是算法遍历图片,判断其中的对象是不是汽车,这就是图片分类。学习构建神经网络的另一个问题,即定位分类问题。这意味着,我们不仅要用算法判断图片中是不是一辆汽...原创 2020-04-10 10:50:29 · 819 阅读 · 0 评论 -
吴恩达深度学习课程之第四门课 卷积神经网络 第四周 特殊应用:人脸识别和神经风格转换
第四周 特殊应用:人脸识别和神经风格转换( Special applications: Face recognition &Neural style transfer)4.1 什么是人脸识别?(What is face recognition? )首先,让我们了解一下人脸识别的一些术语。在人脸识别的相关文献中,人们经常提到人脸验证(face verification)和人脸识别...原创 2020-04-10 16:03:04 · 810 阅读 · 0 评论 -
吴恩达深度学习课程之第五门课 序列模型(Sequence Models) 第一周 循环序列模型
本文参考黄海广主编针对吴恩达深度学习课程DeepLearning.ai 《深度学习课程 笔记 (V5.1 )》第一周 循环序列模型( Recurrent Neural Networks )1.1 为什么选择序列模型?(Why Sequence Models?)循环神经网络(RNN)之类的模型在语音识别、自然语言处理和其他领域中引起变革。在本节课中,学习如何自行创建这些模型。先看一些有效使用了序列模型的例子。1. 语音识别:例子里输入和输出数据都是序列模型,因为 x是一个按时播放的音原创 2020-08-05 23:09:01 · 961 阅读 · 1 评论 -
吴恩达深度学习课程之第五门课 序列模型(Sequence Models) 第二周 自然语言处理与词嵌入
本文参考黄海广主编针对吴恩达深度学习课程DeepLearning.ai 《深度学习课程 笔记 (V5.7)》第二周 自然语言处理与词嵌入( Natural Language Processingand Word Embeddings )2.1 词汇表征(Word Representation )上周我们学习了 RNN、GRU 单元和 LSTM 单元。本周你会看到我们如何把这些知识用到NLP 上,用于自然语言处理。其中一个很关键的概念就是词嵌入(word embeddings),这是语言...原创 2020-08-06 20:02:49 · 620 阅读 · 0 评论