# 机器学习
Clark-dj
唯有扎下心来做事情学东西才是硬道理!
博客都是平时的一些学习笔记,很多都是自学,难免会有错误和不足之处,望留言指出。一些分享若有侵权,马上删除。
展开
-
CMake Error: The source directory “/home/pi/Downloads/inference_engine_vpu_arm/deployment_tools/
原因分析:文件夹位置有问题问题执行cmake .. -DCMAKE_BUILD_TYPE=Release -DCMAKE_CXX_FLAGS="-march=armv7-a"时出现错误提示如下CMake Error: The source directory "/home/pi/Downloads/inference_engine_vpu_arm/deployment_tools/inference_engine/samples" does not appear to contain原创 2021-03-06 20:19:03 · 2058 阅读 · 0 评论 -
搭建树莓派 4B + intel movidius 神经元计算棒2代深度学习环境
换源这样下载速度会快一点稳定一点:使用管理员权限,执行sudo leafpad /etc/apt/sources.list在打开的文件中,用#注释掉原文件内容,用以下内容取代:deb http://mirrors.tuna.tsinghua.edu.cn/raspbian/raspbian/ stretch main contrib non-free rpideb-src http://mirrors.tuna.tsinghua.edu.cn/raspbian/raspbian/原创 2021-03-06 20:13:44 · 888 阅读 · 0 评论 -
weka 集成学习
使用不同的分类方法投票bagging(装袋法)WEKA:bagging(装袋法)在meta下bagSizepercent:从训练集中取样得到另一个相同大小的数据集,重复取样,每次取样都得到同样大小的不同数据集seed:随机种子随机森林:这次不是随机训练书记,而是随机算法,如何随机算法取决于算法是什么weka:RandomForest在tree下属性数量boosting加强boosting加强:是循环算法,新一轮的模型建立在先前模型的分类结果上,在实例上加权为.原创 2021-03-04 13:52:38 · 1003 阅读 · 1 评论 -
weka SVM
支持向量决定边界,边界却决于数据集数量极少的几个点,避免过拟合SMO序列最小优化算法(只能用于二类问题)Kernel核LibSVM需要单独下载然后放到Java对应的位置原创 2021-03-04 11:21:59 · 644 阅读 · 1 评论 -
weka 逻辑回归分类
分类方法计算概率原创 2021-03-04 10:19:52 · 398 阅读 · 1 评论 -
weka 线性回归
分类预测一个名词值,回归预测一个数字值线性回归数值型数据集模型:分类值的计算公式相关系数:Correlation coefficient =0.9012非线性回归原创 2021-03-03 20:57:25 · 1258 阅读 · 1 评论 -
weka 分类边界
观察二维数据集可视化:可视化仅限数据属性和二维视图OneR三种颜色三种花决策分解OneR选择以petalwidth为决策依据观察其他分类器的决策边界IBKk=5会投票法决定区域颜色K=20更模糊NaiveBayes连续属性,要选择的一个监督离散方法棋盘格局:属性被认为是独立的,属性相同而独立参与决策J48更改叶节点最小实例树minNumObj加大为5会更简单10与OneR相似分类器偏差:不同的创建实例空间的方法.原创 2021-03-03 20:33:16 · 406 阅读 · 1 评论 -
weka 最近邻
寻找训练数据中与新实例最相似的实例判断相似,相似性函数,距离函数,欧氏距离、曼哈顿距离噪音实例,KNN(K寻找最近的K个实例),在WEKA中叫IBK,是一种懒惰学习法,改变KK=5时,降低可能没有噪音k=20如果是一个有噪声的数据,K增大时准确率会提高,但是增加到一定程度会降低增大到极限,例如100,会找出最近的100个实例,求他们的类别平均值,这样准确率会接近基线分类器的...原创 2021-03-03 19:26:19 · 574 阅读 · 1 评论 -
weka 决策树
J48基于从上到下的策略,递归的分治策略,基于信息论决策树只出现了三个属性,只要最后能够完全分,也就是每个节点只有一个分类。修建决策树,简单方法,如果节点包含的实例非常少,就停止分裂在KEKA中修改参数minNumObj:每个叶节点最少包含多少实例可以先创建一个详尽的树反向修剪比正向修剪效果好。confidenceFactor:用于修剪的信心因数(较小的值导致更多的修改)subtreeRaising:修建一个内部节点并将它的子树提升一个层次,叫做子原创 2021-03-03 18:53:01 · 4175 阅读 · 4 评论 -
WEKA (概率的应用)
OneR假设只通过一个属性来决策,另一种策略正好相反,假设所有属性在决策过程中有平等的,独立的贡献,这是Naive Bayes。Naive Bayes基于两个假设:所有属性都同等重要,且在统计上是独立的。概率论Bayes Theorem(贝叶斯定理)先验概率后验概率WEKA尝试名词性天气数据集不同都大了一个,避免出现零次数,零乘任何数都为0(零次数问题,简单每个数加一)假设各因素相互独立,但实际一般不独立,依然能得到好的分类效果,因为分类精确不是很重要原创 2021-03-03 09:51:55 · 253 阅读 · 0 评论 -
WEKA( OneR,过拟合)
OneR创建所谓的一层决策树,或者一组只检测某个属性的规则,一棵只在根节点根据某个属性值分叉的树,或者,一组只检测某个属性值的规则,一个属性一个分支。(也就是用一个属性来决策)过拟合:...原创 2021-03-03 09:14:58 · 714 阅读 · 0 评论 -
weka(评估机器学习算法性能的标准方法,交叉验证)
用不同的随机种子来运行预留法(百分比分割),这叫重复预留法交叉验证系统性重复运行预留法,它通过减少预测误差来提高预留法的性能分层交叉验证重复预留法交叉验证只分割一次,分成10份9份用作训练数据,剩余一份作为测试数据,接着用另外9份作为训练数据,.....重复10次,每次都用分割的不同的数据作为测试数据。换句话说,数据分为10份,每份轮流做测试集,其余作为训练集,平均10次的结果(10层交叉验证)。分层交叉验证为交叉验证变体选择一种能确保每一部分数据都具有分类代表性的分割原创 2021-02-23 17:37:03 · 2852 阅读 · 3 评论 -
weka(基线准确度)
基线准确度数据集diabetesJ48NaiveBayes分类器PARTZeroR分类器找到可能性最大的分类,然后总是猜这个分类,和数据分布有关500/768约等于0.651042,这个就是基线精确度在应用前先尝试一下基线分类器ZeroR...原创 2021-02-23 17:11:39 · 850 阅读 · 0 评论 -
weka(训练测试数据集)
使用不同的测试数据和训练数据很重要。只有一组数据怎么办,把数据分为两部分J48不能直接选择use training set再重新开始,会产生误导性结果只有一个数据集可以按照百分比分割(数据分割是随机的)不同分割会带来不同结果。运行前wake会初始化随机数生成器,确保相同分割结果同。可以设置随机数修改相同分割的结果。设置随机种子(做交叉验证或百分比分割)输出分类器源代码通过更改随机种子,多运行几次,再取平均值得到新的准确率,计...原创 2021-02-23 16:49:59 · 2283 阅读 · 0 评论 -
weka(设定测试集)
打开segment-challenge.arff数据集使用用户分类器(没找到)选择用来评估分类器的数据集segment-test原创 2021-02-23 16:23:12 · 607 阅读 · 0 评论 -
weka建立数据的可视化模型
鸢尾花选择其中之一,x为花萼宽,y为花瓣宽的散点图三种颜色三种花点击选择不同颜色单击单独数据点,看到详细信息单击这个点可以看到3个实例花萼宽同矩形选择数据集的一部分变为reset重选save保存(清理数据中异常数据的一种方法)观察可视化分类结果分类模块右击历史记录,分类器误差单击某个数据,左侧为预测值与实际值对应混淆矩阵可以找到这三个实例,原本为b(Iris-versicolor)错...原创 2021-02-23 15:52:41 · 965 阅读 · 0 评论 -
weka(使用过滤器)
预处理删除属性载入数据(举例天气数据集)弹出过滤器ALLFiter和MultiFilter用于合并多种过滤器supervised监督过滤器:在过滤时使用类值unsupervised无监督过滤器:在过滤时不使用类值(更广泛),分为属性和实例过滤器举例:删除属性配置点击ok应用undoc撤回简单方式删除属性,选中,remove删除所有湿度值为high的实例点击more了解更多过滤前原创 2021-02-23 15:13:32 · 728 阅读 · 0 评论 -
weka尝试建立第一个分类器
引入打开数据集进入分类器面板选择一种分类器TREES分类器决策树分类器刚刚选择好的J48分类器选定数据集和分类器,点击start开始,得到分类结果结果分析混淆矩阵对角线上为正确实例,非对角线为错误J48配置面板unpruned默认false(意思是剪枝)修改参数为TRUE变为未剪枝的决策树再次运行结果发生改变可从左侧查看所有训练历史选中记录,右击可视化决策树结果如下(右击可选择显示效果)原创 2021-02-22 21:28:51 · 349 阅读 · 0 评论 -
weka数据集举例之天气数据集weather.nominal.arff
例子weather.nominal.arff@relation weather.symbolic@attribute outlook {sunny, overcast, rainy}@attribute temperature {hot, mild, cool}@attribute humidity {high, normal}@attribute windy {TRUE, FALSE}@attribute play {yes, no}@datasunny,hot,high,FALS原创 2021-02-22 20:57:34 · 4923 阅读 · 0 评论 -
weka之数据集学习
每次先选定数据集,才可以继续选择上方的分类、聚类等观察数据集weather.nominal.arffweather.numeric.arff观察上面两组天气数据,区别在温度和湿度,离散的连续的温度取最小值,最大值、平均值和标准差,湿度类似玻璃数据集glass.arffWeka数据集格式-ARFFWeka处理的数据集通常是存放在一种叫ARFF格式的文件中的。那么,什么是ARFF呢?以weather.nominal.arff数据集为例,完整的数据集如下表示:.原创 2021-02-22 20:47:39 · 4648 阅读 · 0 评论 -
Weka之Explorer界面简介
Explorer五大面板简介主要预处理面板打开数据,分类面板数据分类,可视化面板可视化数据更详细可参考:https://blog.csdn.net/u010372981/article/details/44900435打开数据集打开的天气数据集简介:14个样本,5个属性:阴晴属性,温度属性、湿度属性、刮风属性、是否能玩游戏选定属性就可以看到此属性的值:比如阴晴属性有晴朗、多云和有雨play属性点击编辑可以看到数据表并且还可以修改..原创 2021-02-22 14:30:06 · 549 阅读 · 0 评论 -
初识Weka之功能以及界面简介
Weka系统汇集了前沿的机器学习算法和数据预处理工具,以便用户能够快速灵活地将已有的成熟处理方法应用于新的数据集。1、 处理方法包括处理标准数据挖掘问题的所有方法:回归、分类、聚类、关联规则和属性选择。2、 输入数据通过以ARFF格式为代表的文件进行输入 直接读取数据库表3、Weka主界面 Weka GUI Chooser(1) 探索者(Explorer)图形用户界面,通过选择菜单和填写表单,可以调用Weka的所有功能。(2)实验者(Experimenter)帮助用户解.原创 2021-02-22 13:57:47 · 1950 阅读 · 0 评论 -
线性可分与线性不可分
线性可分与线性不可分现实任务中,原始样本空间内并不存在一个能正确划分两类样本的超平面。可将样本从原始空间影射到一个更高维的特征空间,使得样本在这个特征空间内线性可分。例如在上图中,若将原始的二维空间映射到一个合适的三维空间,这样就能找到一个合适的划分超平面,幸运的是如果原始空间是有限维度,即属性数有限,那么一定存在一个高维特征空间使得样本可分。由于数据点都在二维平面上,所以此时分隔超平面就只是一条直线。但是,如果所给的数据集是三维的,那么此时用来分隔数据的就是一个平面。显而易见,更高维的.原创 2021-02-19 21:56:31 · 3368 阅读 · 0 评论 -
机器学习集成学习算法介绍
参考周志华《机器学习》李航《统计学习方法》集成学习自制PPT,第一次学习,错误之处,多多指教。决策树法确定V=2.5阈值小知识点:Hoeffding不等式:Hoeffding不等式指的是某个事件的真实概率与在伯努利试验中观察到的频率之间的差异。https://blog.csdn.net/jesmine_gu/article/details/83245907最小化损失函数与最大似然函数关系(线性回归为例)https://blo..原创 2021-02-04 22:10:25 · 1126 阅读 · 0 评论 -
机器学习集成学习手写笔记
手写笔记,字是丑了点,仅用作个人复习。例题分界线决策树法求第一个阈值2.5原创 2021-02-04 21:49:27 · 196 阅读 · 0 评论 -
决策树手写笔记
手写笔记,字是丑了点,仅用作个人复习。原创 2021-02-02 19:21:25 · 169 阅读 · 0 评论 -
线性回归及分类手写笔记
手写笔记,字是丑了点,仅用作个人复习。原创 2021-02-02 18:10:31 · 177 阅读 · 0 评论 -
线性模型的概率解释及线性判别分析(最大似然及线性回归、正则线性回归的概率解释、对数几率回归的概率解释)
手写笔记,字是丑了点,仅用作个人复习。原创 2021-02-02 18:02:17 · 769 阅读 · 0 评论 -
基本的一些术语
原创 2021-02-02 17:53:39 · 109 阅读 · 0 评论 -
最大似然及线性回归(最小化损失函数关系)
在通常情况下,我们可以假设误差 ϵ i ,i = 1,··· ,n(n 为样本数量)独立同分布 (independently and identically distributed,IID),并且分布满足正态分布。因此,有。由于 ϵ 分布随机,因此可以令µ = 0。再观察,由于 ,根据正态分布性质,可知。因此有:...原创 2021-02-02 15:20:32 · 1025 阅读 · 0 评论 -
回归任务中最常用的性能度量是均方误差
摘自周志华《机器学习》 ,仅做记录,方便复习原创 2021-01-30 10:17:13 · 1137 阅读 · 0 评论 -
模型的评估方法简介(机器学习)
模型的评估方法简介留出法 (hold-out):直接将 X 分解为两个不相交的集合,其中一个作为训练集,另一个作为测试集。常常将2/3− − 4/5的样本用于训练,其余用于测试。 交叉验证 (cross validation): 将数据集 X 分解为 k 个互补相交的子集,即 X 1∪X 2∪···∪X k = X。然后每次用k − 1 个子集训练,剩余一个做测试,最终返回 k 个测试结果——k 折交叉验证。...原创 2021-01-29 19:13:59 · 263 阅读 · 0 评论