还是畅通工程 (克鲁斯卡尔算法+并查集)

本文详细介绍了Kruskal算法在解决最小生成树问题中的应用,包括算法的基本思想、实现步骤及核心代码。通过实例演示了如何使用贪心策略和并查集来确定最小的公路总长度。

参考网站:

https://blog.csdn.net/yeruby/article/details/38615045

https://blog.csdn.net/u013615904/article/details/45715881

某省调查乡村交通状况,得到的统计表中列出了任意两村庄间的距离。省政府“畅通工程”的目标是使全省任何两个村庄间都可以实现公路交通(但不一定有直接的公路相连,只要能间接通过公路可达即可),并要求铺设的公路总长度为最小。请计算最小的公路总长度。 

Input

测试输入包含若干测试用例。每个测试用例的第1行给出村庄数目N ( < 100 );随后的N(N-1)/2行对应村庄间的距离,每行给出一对正整数,分别是两个村庄的编号,以及此两村庄间的距离。为简单起见,村庄从1到N编号。 
当N为0时,输入结束,该用例不被处理。 

Output

对每个测试用例,在1行里输出最小的公路总长度。 

Sample Input

3
1 2 1
1 3 2
2 3 4
4
1 2 1
1 3 4
1 4 1
2 3 3
2 4 2
3 4 5
0

Sample Output

3
5


        
  
Huge input, scanf is recommended.

Hint

sal算法裸题
krusal算法是基于“避圈法”的思想,避圈法可以用并查集实现。
krusal又是基于贪心思想的。
先把所有边按从小到大的顺序排序。然后,逐个选取,在选取的过程中,如果查询到两个端点不在同一个集合,那么必然选择它作为最小生成树的一部分,并合并这两个端点。
如果查询到这两个端点在同一个集合里,那么继续选取下一条边,直至选取了n-1条边,算法结束。
算法复杂度为排序的复杂度。O(e*log(e))

Hint
        
#include <iostream>
#include <cstdio>
#include <cstring> 
#include <cmath>
#include<algorithm>
using namespace std;
 
int n,m,ans,fa[10005];//n*(n-1)/2;

struct Edge{
	int x,y,val;
}edge[10005];

int find(int x)                
{
    if(fa[x]==x)
    return x;
    return fa[x]=find(fa[x]);                  
}
 
bool same(int x,int y){
   return find(x)==find(y) ;
}
 
void bind(int x,int y)
{
    int fx=find(x);
    int fy=find(y);                      
    if(fx!=fy)           
	fa[fx]=fy;
}
 
bool cmp(Edge a,Edge b){
	return a.val<b.val; 
} 

int main()
{
	
    while(scanf("%d",&n)!=EOF&&n!=0) {
    	
    	m=n*(n-1)/2;
        for(int i=1;i<=m;i++) 
        scanf("%d%d%d",&edge[i].x,&edge[i].y,&edge[i].val);
        
        //kruskal
        sort(edge+1,edge+1+m,cmp);//边排序
	    for(int i=1;i<=n;i++)
        fa[i]=i;//初始化
	    ans=0;
	    for(int i=1;i<=m;i++)
	    if(!same(edge[i].x,edge[i].y)){
		   bind(edge[i].x,edge[i].y);
	       ans+=edge[i].val;
	   }//一条边的两个端点不在同一个集合,则选它,并合并端点
    
        cout<<ans<<endl;
    }
    return 0;
}

一直在改,sort函数出了问题,数组,for循环从1开始的

II)Sort函数有三个参数:

(1)第一个是要排序的数组的起始地址。

(2)第二个是结束的地址(最后一位要排序的地址的下一地址)

(3)第三个参数是排序的方法,可以是从大到小也可是从小到大,还可以不写第三个参数,此时默认的排序方法是从小到大排序。

克鲁斯卡尔算法是一种用于求解小生成树的贪心算法,而并查集是一种用于维护元素分组信息的数据结构。它们在解决图论问题中经常一起使用。 克鲁斯卡尔算法的基本思想是,通过不断选择边权值小且不会产生环路的边,逐步构建小生成树。在实现过程中,使用并查集来判断两个节点是否属于同一个连通分量,以避免形成环路。 并查集是一种用于解决集合合并与查询问题的数据结构。它通过维护一棵树来表示每个元素所属的集合,其中每个节点指向其父节点,树的根节点表示该集合的代表元素。通过路径压缩和按秩合并等优化策略,可以提高并查集的效率。 在克鲁斯卡尔算法中,首先将图中的所有边按权值从小到大排序,然后依次选择边进行判断。当选择一条边时,判断该边连接的两个节点是否属于同一个连通分量。如果不属于同一个连通分量,则选择该边,并将两个节点合并到同一个连通分量中。重复这个过程直到选择了 n-1 条边,其中 n 是图中节点的个数,即得到小生成树。 克鲁斯卡尔算法的时间复杂度主要取决于排序边的时间复杂度,一般情况下为 O(ElogE),其中 E 是边的数量。并查集的操作时间复杂度为 O(α(n)),其中 α(n) 是一个非常慢增长的函数,可以认为是常数级别。因此,整个算法的时间复杂度为 O(ElogE)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Clark-dj

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值