J48基于从上到下的策略,递归的分治策略,基于信息论
决策树只出现了三个属性,只要最后能够完全分,也就是每个节点只有一个分类。
修建决策树,简单方法,如果节点包含的实例非常少,就停止分裂
在KEKA中修改参数
minNumObj:每个叶节点最少包含多少实例
可以先创建一个详尽的树反向修剪比正向修剪效果好。
confidenceFactor:用于修剪的信心因数(较小的值导致更多的修改)
subtreeRaising:修建一个内部节点并将它的子树提升一个层次,叫做子树提升,可以选择开启和关闭(子树提升增加算法复杂度,关闭可以缩短运行时间)
不建议参数修改,默认值也不错。
需要修建的真正原因是决策树过度拟合训练数据集
diabetes数据集
默认false修剪,改为True不修建
不修剪