高数往事(2) 欧拉公式的理解和证明。

背景

已知欧拉公式的内容如下:
e i x = c o s ( x ) + i s i n ( x ) e^{ix} =cos(x)+isin(x) eix=cos(x)+isin(x)
特别地,当 x = π x=\pi x=π时,有 e i π = − 1 e^{i\pi} =-1 e=1,也就是欧拉恒等式。那么,如何理解这个公式,以及如何证明这个公式的两侧相等呢?

理解1 根据几何观察理解

参考【漫士科普】如何最简单且本质地理解欧拉公式?

乘以一个复数相当于旋转

首先,通过数学展开推导,可以发现,两个复数相乘,相当于模长相乘,角度相加。作者认为,实际上我们可以从几何角度去理解,直接推导出"复数相乘,角度相加"的结论。

首先,我们通过公式推导发现,任意一个复数 u u u乘以i以后,得到的新复数 u i ui ui相当于将 u u u逆时针旋转90度。也就是说,对任意复数z乘以i都是一个逆时针旋转90°的操作

更一般地,假如对复数z乘以复数u呢?我们可以先建立一个新的u坐标系,其基向量分别为u和iu(留意到,由于乘以i是个90°旋转操作,所以u和iu相互垂直)。然后,假设 z = x + y i z=x+yi z=x+yi,则两个复数相乘有 z ∗ u = ( x + y i ) ∗ u = x u + y i u z*u=(x+yi)*u=xu+yiu zu=(x+yi)u=xu+yiu,可以发现,相乘结果在u坐标系上的位置,与z在原坐标系的位置一样,都是(x,y)。

所以,我们可以从图片轻易观察出, z u zu zu的夹角,等于坐标轴u的夹角加位置z的夹角,也就是下图的" α + β \alpha + \beta α+β"。有了这个"旋角相加"的结论,再去推"模长相乘"就指日可待了。

观察欧拉公式的几何现象

最后,当 f ( x ) = e i x f(x)=e^{ix} f(x)=eix时,求导得到 f ′ ( x ) = i f ( x ) f'(x)=if(x) f(x)=if(x),也就是说,在任意一点,f(x)的导数都垂直于f(x),而带入x=0可知f(0)=1。

综上,我们可以感知到,f(x)是一个在复数域上,边长为1的圆周运动。于是,我们也就能顺势推理出 e i x = c o s x + i s i n x e^{ix}=cosx+isinx eix=cosx+isinx,其中x是旋转角度。

所以,欧拉恒等式也就是当 x = π x=\pi x=π,即f(x)旋转了一个半圆时的位置了,而这个位置刚好落在实数轴的-1上。

理解2

阅读用几何直觉理解欧拉公式!【中学生也能懂|manim】

证明方式

参考Euler’s Formula: A Complete Guide,给出了三种证明:

  1. 通过泰勒展开证明。
  2. 通过证明 f 1 ( x ) f_1(x) f1(x)/ f 2 ( x ) f_2(x) f2(x)的导数为零,来间接证明 f 1 ( x ) f_1(x) f1(x)= f 2 ( x ) f_2(x) f2(x)
  3. 通过极坐标系证明。这个还没看。

第一点,通过泰勒展开证明。这个只要泰勒公式能用在复数上,就可以泰勒展开公式的两边,然后证明两者相等。

第二点,通过证明f(x)/g(x)的导数为零。我们发现 f 1 ( x ) f_1(x) f1(x) f 2 ( x ) f_2(x) f2(x)的导数分别为 i f 1 ( x ) if_1(x) if1(x) i f 2 ( x ) if_2(x) if2(x),所以 f 1 ( x ) f_1(x) f1(x)/ f 2 ( x ) f_2(x) f2(x)的导数可以得到0。


当x=0时,两者比值为1。总结可知,在任意一个点x, f 1 ( x ) f_1(x) f1(x) f 2 ( x ) f_2(x) f2(x)的比值也就都为1,也就是说两者处处相等。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值