机器学习学习总结(持续更新)

机器学习:

介绍

1、分析数据获得一个模型
2、使用模型对未知数据预测
语言选择:python

实现
实现
算法
分类
预测

样本数据: 一般都是存储的文件形式,(由于存在传统数据库会格式、以及文件量太大)

现有产品:百度AI 平台

样本数据(数据集的获取)

kaggle 数据平台
UCI
sklearn
一个纯净的样本数据集对模型的构造很重要;

实现特征工程: 采用语言 python 的 sklearn (方式: 分类模型、 回归模型、聚类模型、特征工程)
特征工程

特征抽取:
字典的特征抽取: 作用:对字典数据特征值化
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

重点内容:
1、预处理
2、特征选择

预处理:

对数值型数据进行处理(数值通过特征值化获得)
无量纲化:为的加快模型求解速度(把不同的规格获得分布转换成相同的规格获得特点的分布)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值