Mathmatics
文章平均质量分 72
Dust_Evc
Just love it
展开
-
点积、叉积、内积、外积【汇总对比】
点积(dot product)又叫标量积、数量积(scalar product)。它是两个数字序列的相应条目的乘积之和。在欧几里得几何中,两个向量的笛卡尔坐标的点积被广泛使用。它通常被称为欧几里得空间的内积(或很少称为投影积),是内积的一种特殊情况,尽管它不是可以在欧几里得空间上定义的唯一内积。原创 2022-10-24 21:39:26 · 41419 阅读 · 4 评论 -
先验概率、后验概率、贝叶斯公式_学习笔记
先验概率(prior probability):先验概率是指根据以往经验和分析得到的概率,如全概率公式,它往往作为"由因求果"问题中的"因"出现的概率。在贝叶斯统计推断中,不确定数量的先验概率分布是在考虑一些因素之前表达对这一数量的置信程度的概率分布。例如,先验概率分布可能代表在将来的选举中投票给特定政治家的选民相对比例的概率分布。未知的数量可以是模型的参数或者是潜在变量。后验概率(posterior probability):事情还没有发生,要求这件事情发生的可能性的大小,是先原创 2022-05-08 12:51:38 · 2849 阅读 · 0 评论 -
矩阵相乘复杂度
二维矩阵:假设矩阵A:i×j,矩阵B:j×k。AxB计算时,A矩阵的第一行的第一个元素要进行k次乘法运算,A矩阵共有 i×j个元素,故总的需要 i×j×k次乘法运算。即时间复杂度为 O(i×j×k)。若想了解其他更详细的复杂度分析,可以参阅该博文:https://www.baidu.com/link?url=u6t5Uc1TuYbYm-td9DkfhLp1uPY6FQfUo3zSJ8ocL-UpvEllJBhFs331EHXZtzK8pKWah9DGROuYUn2NvwNRVYc5AHF原创 2022-03-07 17:28:21 · 4628 阅读 · 0 评论 -
最小二乘法
一种数学优化技术。它通过寻找数据的最佳函数匹配。利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。最小二乘法还可用于曲线拟合。其他一些优化问题也可通过最小化能量或最大化熵用最小二乘法来表达。对于无约束最优化问题,最小二乘法的一般形式为 [9] :其中(x, y)是一对观测量,L(x)称为残差函数,ω为待定参数。**当L(x)是x的线性函数时,称为线性最小二乘问题,否则称为非线性最小二乘问题**。原创 2021-12-14 23:39:41 · 2058 阅读 · 0 评论 -
图像熵的计算公式
图像熵(image entropy)是图像“繁忙”程度的估计值。图像熵表示为图像灰度级集合的比特平均数,单位比特/像素,也描述了图像信源的平均信息量。对于离散形式的二维图像,其信息熵的计算公式为:[1]对于上式,其中,pi 为每一灰度级出现的概率。熵指的是体系的混乱的程度,对焦良好的图像的熵大于没有清晰对焦的图像,因此可以用熵作为一种对焦评价标准。熵越大,图像越清晰。图像的熵是一种特征的统计形式,它反映了图像中平均信息量的多少,表示图像灰度分布的聚集特征,却不能反映图像灰..原创 2021-11-10 15:58:08 · 13834 阅读 · 0 评论 -
信息熵的数值计算公式
1948年,信息论之父 C. E. Shannon (香农)借鉴了热力学的概念,把信息中排除了冗余后的平均信息量称为“信息熵”,并给出了计算信息熵的数学表达式。信息熵介绍一元变量信息熵:式中对数一般取2为底,单位为比特。但是,也可以取其它对数底,采用其它相应的单位,它们间可用换底公式换算。多元变量信息熵:从以上定义可以看出,信息熵是随机变量在整个分布空间内的概率函数的离散化加和:对于离散变量,直接采用以上式子进行计算即可; 对于连续变量,需要首先通过离散分箱(即数据量化原创 2021-11-09 12:46:16 · 3290 阅读 · 0 评论 -
平面法向量求法
https://wenku.baidu.com/view/1fd1c2ef81c758f5f61f670f.html?sxts=1578399348412https://wenku.baidu.com/view/ca2a66be195f312b3169a59a.html原创 2020-01-07 22:01:01 · 1246 阅读 · 0 评论 -
Simpson积分法 资源收集
Simpson’s Rule (辛普森法则)复化Simpson积分公式和复化梯形积分公式-通用程序Matlab-复化梯形公式和复化Simpson公式C++实现复化辛普森公式求积分算法...原创 2020-01-05 22:49:23 · 365 阅读 · 0 评论 -
常微分方程和偏微分方程的区别
凡含有参数,未知函数和未知函数导数 (或微分) 的方程,称为微分方程,有时简称为方程,未知函数是一元函数的微分方程称作常微分方程,未知数是多元函数的微分方程称作偏微分方程.微分方程中出现的未知函数最高阶导数的阶数,称为微分方程的阶.定义式如下: F(x, y, y¢, ., y(n)) = 0 如果一个微分方程中出现的未知函数只含一个自变量,这个方程叫做常微分方程,也...原创 2019-12-30 10:11:45 · 21736 阅读 · 0 评论 -
主曲率、平均曲率、高斯曲率、法曲率、主方向
参考自百度百科。平均曲率、主曲率和高斯曲率是曲率的三个基本要素。主曲率:过曲面上某个点上具有无穷个正交曲率,其中存在一条曲线使得该曲线的曲率为极大,这个曲率为极大值Kmax,垂直于极大曲率面的曲率为极小值Kmin。这两个曲率属性为主曲率。他们代表着法曲率的极值。平均曲率:是空间上曲面上某一点任意两个相互垂直的正交曲率的平均值。如果一组相互垂直的正交曲率可表示为K1,K2,那么平均曲率则...原创 2019-12-18 15:57:35 · 4470 阅读 · 0 评论 -
超定方程组及其求解方法
超定方程一般是不存在解的矛盾方程。例如,如果给定的三点不在一条直线上, 我们将无法得到这样一条直线,使得这条直线同时经过给定这三个点。 也就是说给定的条件(限制)过于严格, 导致解不存在。在实验数据处理和曲线拟合问题中,求解超定方程组非常普遍。比较常用的方法是最小二乘法。形象的说,就是在无法完全满足给定的这些条件的情况下,求一个最接近的解。曲线拟合是最小二乘法要解决的问题,实际上就是求以上...原创 2019-11-02 13:01:00 · 13017 阅读 · 1 评论 -
什么是泛函?
1.泛函也是一种“函数”,它的独立变量一般不是通常函数的“自变量”,而是通常函数本身。泛函是函数的函数。由于函数的值是由自变量的选取而确定的,而泛函的值是由自变量函数确定的,故也可以将其理解为函数的函数。泛函的自变量是函数,泛函的自变量称为宗量。简言之,泛函就是函数的函数。2.一般的泛函就是把函数作为元素来研究的一门学科,泛函分析,举个简单一点的列子,我们以前学的函数是把数字作为基本的元...原创 2019-05-03 10:04:34 · 10552 阅读 · 0 评论 -
L0、L1、L2范数、核范数、优化与调参剖析、向量范数与矩阵范数
我们聊聊机器学习中出现的非常频繁的问题:过拟合与规则化。我们先简单的来理解下常用的L0、L1、L2和核范数规则化。最后聊下规则化项参数的...转载 2019-05-03 19:57:29 · 5797 阅读 · 1 评论 -
logistic回归
十分钟理解Logistics回归:https://blog.csdn.net/meilikafei/article/details/80577765Logistic回归原理及公式推导:https://blog.csdn.net/AriesSurfer/article/details/41310525logistic回归原理解析及Python应用实例:https://blog.csdn.ne...原创 2019-08-03 02:04:23 · 156 阅读 · 0 评论 -
Logistic回归总结
logistic回归是一种广义线性回归(generalized linear model),是一种广义的线性回归分析模型,因此与多重线性回归分析有很多相同之处,常用于数据挖掘,疾病自动诊断,经济预测等领域。它们的模型形式基本上相同,都具有w‘x+b,其中w和b是待求参数,其区别在于他们的因变量不同,多重线性回归直接将w‘x+b作为因变量,即y =w‘x+b,而logistic回归则通过函数L将w...原创 2019-08-03 02:07:38 · 1226 阅读 · 0 评论 -
SPSS_Logistic回归分析结果表中的英文字母意思
logistic回归又称logistic回归分析,是一种广义的线性回归分析模型,常用于数据挖掘,疾病自动诊断,经济预测等领域。logistic回归的因变量可以是二分类的,也可以是多分类的,但是二分类的更为常用,也更加容易解释。所以实际中最为常用的就是二分类的logistic回归。logistic回归的主要用途:一是寻找危险因素,正如上面所说的寻找某一疾病的危险因素等。二是预测,如果已经建立...原创 2019-08-03 02:09:36 · 16854 阅读 · 0 评论 -
异号MOD(取模或求余)运算法则
一、两个异号整数求余1.函数值符号规律(余数的符号) mod(负,正)=正 mod(正,负)=负结论:两个整数求余时,其值的符号为除数的符号。2.取值规律 先将两个整数看作是正数,再作除法运算:①能整除时,其值为0 (或没有显示);②不能整除时,其值=除数×(整商+1)-被除数,例:mod(36,-10)=-4 即:36除以10的整数商为3,加1后为4;其与除数之积为40;再与被除数之差为...原创 2019-09-25 22:02:31 · 10026 阅读 · 0 评论 -
Bootstrap 与 Jackknife 笔记
[转载]:https://cosx.org/2008/11/outlook-on-statistical-methods一般情况下,总体永远都无法知道,我们能利用的只有样本,现在的问题是,样本该怎样利用呢?Bootstrap 的奥义也就是:既然样本是抽出来的,那我何不从样本中再抽样(Resample)?Jackknife 的奥义在于:既然样本是抽出来的,那我在作估计、推断的时候 “扔掉” 几个...转载 2019-04-27 19:55:51 · 2147 阅读 · 0 评论