人工智能发展史
在1965,达特茅斯学院的一次会议上正式确立了人工智能研究领域
人工智能/机器学习/深度学习之间的关系
生物的本能与机器的本能
什么是机器学习
机器学习在近30多年已发展为一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、计算复杂性理论等多门学科。
机器学习算法是一类从数据中自动分析获得规律,并利用规律对未知数据进行预测的算法。
机器学习已广泛应用于数据挖掘、计算机视觉、自然语言处理、生物特征识别、搜索引擎、医学诊断、检测信用卡欺诈、证券市场分析、DNA序列测序、语音和手写识别、战略游戏和机器人等领域
机器学习路线(learning map)
监督学习(Supervised learning )
回归:
分类:
深度学习:
半监督学习(Semi-Supervised learning)
数据集中既包含带标记的数据集,也包含不带标记的数据,但是带标记的数据比较少。
迁移学习(Transfer learning)
迁移学习是在已经学习的基础上,去做看似和以前学习不相关的事情,但是实际效果很好。
非监督学习(Unsupervised learning)
非监督学习就是指在数据集没有标注的情况下进行学习。
结构化学习(Structed learning)
结构化学习就是输入或者输出具有结构的数据,而在之前的学习之中,输入和输出都是向量。结构化学习的输入和输出都是对象,而对象可能是序列、列表或者树等等,形式可以不同。
- 语音识别
- 机器翻译
- 人脸识别
增强学习(Reinforcement Learning,RL)
增强学习又叫做强化学习,是近年来机器学习和智能控制领域的主要方法之一。增强学习关注的是智能体如何在环境中采取一系列行为,从而获得最大的累积回报。通过增强学习,一个智能体应该知道在什么状态下应该采取什么行为。增强学习是从环境状态到动作的映射的学习,我们把这个映射称为策略。增强学习需要智能体自己不断地与数据/环境进行交互,通过试错学习的方式获得最佳策略。