人工智能导论

人工智能发展史

    在1965,达特茅斯学院的一次会议上正式确立了人工智能研究领域

 

 

 

人工智能/机器学习/深度学习之间的关系

 

 

 

 

生物的本能与机器的本能

 

 

 

什么是机器学习

机器学习在近30多年已发展为一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、计算复杂性理论等多门学科。

机器学习算法是一类从数据中自动分析获得规律,并利用规律对未知数据进行预测的算法
机器学习已广泛应用于数据挖掘、计算机视觉、自然语言处理、生物特征识别、搜索引擎、医学诊断、检测信用卡欺诈、证券市场分析、DNA序列测序、语音和手写识别、战略游戏和机器人等领域

 

 

 

 

机器学习路线(learning map)

 

监督学习(Supervised learning )

回归:

分类:

深度学习:

 

半监督学习(Semi-Supervised learning)

数据集中既包含带标记的数据集,也包含不带标记的数据,但是带标记的数据比较少。

 

 

 

 

迁移学习(Transfer learning)

迁移学习是在已经学习的基础上,去做看似和以前学习不相关的事情,但是实际效果很好。

 

 

非监督学习(Unsupervised learning)

非监督学习就是指在数据集没有标注的情况下进行学习。

 

 

结构化学习(Structed learning)

结构化学习就是输入或者输出具有结构的数据,而在之前的学习之中,输入和输出都是向量。结构化学习的输入和输出都是对象,而对象可能是序列、列表或者树等等,形式可以不同。

 

  • 语音识别
  • 机器翻译
  • 人脸识别

 

增强学习(Reinforcement Learning,RL)

增强学习又叫做强化学习,是近年来机器学习和智能控制领域的主要方法之一。增强学习关注的是智能体如何在环境中采取一系列行为,从而获得最大的累积回报。通过增强学习,一个智能体应该知道在什么状态下应该采取什么行为。增强学习是从环境状态到动作的映射的学习,我们把这个映射称为策略增强学习需要智能体自己不断地与数据/环境进行交互,通过试错学习的方式获得最佳策略。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值