最大堆

swim() 表示上浮:作者将其比喻为黑帮新人(插入的新元素),能力高(值大的)的被提升,将能力不够的前辈踩在脚下,直到遇到一个更强的领导。sink ()表示下沉:比喻为黑帮领导,能力不行的或退休的(删除)就被下属取代。每次帮派有新人加入,或有领到退休,帮内都必须重新论资排辈。这个比喻还是挺有意思的。

#include <iostream>
using namespace std;
class MaxHeap
{
private:
    int *a;
    int N;
public:
    MaxHeap(){
        N=0;
    }
    MaxHeap(int n){
        a=new int[n];
        N=0;
    }
    ~MaxHeap(){
        delete a;
    }
    int left(int i)
    {
        return 2*i;
    }
    int right(int i)
    {
        return 2*i+1;
    }
    int parent(int i)
    {
        return i/2;
    }
    bool isEmpty() { return N==0; }
    bool size() { return N; }
    void insert(int val){
        // 这样a[0]是没有存数据的
        //cout<<val<<endl;
        a[++N]=val;
        // 每插入一个数,都调用swim,保持最大堆的性质
        swim(N);
    }
    void swap(int i,int j){
        int temp=a[i];
        a[i]=a[j];
        a[j]=temp;
    }
    int delMax(){
        int maxVal=a[1];
        a[1]=a[N];
        sink(1);
        N--;
        return maxVal;
    }
    void swim(int k){
        while(k>1){
            if(a[parent(k)]<a[k]){
                swap(parent(k),k);
                k=parent(k);
            }
            else break;
        }
    }

    void sink(int k){
        // 将a[k]与子节点中较大的交换
        while(left(k)<=N){
            int j=left(k);
            // 找到子节点中较大的那一个
            if(right(k)<=N && a[left(k)]<a[right(k)]) j=right(k);

            if(a[k]>a[j]) break;
            swap(k,j);
            k=j;
        }
    }

    void show(){
        for(int i=1;i<=N;i++){
            cout<<a[i]<<" ";
        }
        cout<<endl;
    }
};
int main(){
    int a[10]= {3,6,2,7,9,0,8,1,4,5};
    MaxHeap h(100);
    for(int i=0;i<10;i++){
        h.insert(a[i]);
    }
    h.show();
    for(int i=0;i<10;i++){
        cout<<h.delMax()<<" ";
    }
    cout<<endl;
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值