POCR-project-out cascaded regression for face alignment

继上次介绍人脸对齐问题中关于基于整体人脸表观的生成模型的经典方法AAM方法之后,今天继续介绍生成模型下另外一个代表性方法:基于部分可变生成模型之POCR方法,该方法在2015CVPR提出的,在DL非常火的今天,能够基于传统方法在人脸对齐方面做出代表性的工作,足见作者的牛逼之处(个人对于基于传统方法做出代表性的工作的作者一般都比较羡慕!!!个人观点)废话不多说了,回归今天的正题。
POCRproject out cascaded regression
从题目就可以看出,文章同样也采用了Cascaded的方法,即boosting的思想,不同的是,作者融合了高斯牛顿的优化方法。
方法概述:
1、构建形状和外观模型
首先,文章是利用PCA从训练数据中学习一个参数生成模型,当然,这包含两个模型,一个是全局形状模型,一个是基于部分的外观模型,为什么要使用参数生成模型?作者给出了他们的观点–为了后面方便高斯牛顿方法进行优化。
具体步骤:首先利用面部特征点定义人脸形状,然后利用Procrustes Analysis进行一个归一化处理,接着使用PCA进行一个降维处理,这样就可以获取一个初步形状模型,该模型可以定义为 S(p) = S0 + Sp. 即形状模型可以通过平均形状和形状变化向量组合表示。
1.2、外观模型构建:
首先对图像进行一个预处理warp,移除相似性转换的影响。然后从每一个特征点抽取SIFT特征,作为局部形状描述符,同样利用PCA进行处理࿰

内容概要:本文详细介绍了利用粒子群优化(PSO)算法解决配电网中分布式光伏系统的选址与定容问题的方法。首先阐述了问题背景,即在复杂的配电网环境中选择合适的光伏安装位置和确定合理的装机容量,以降低网损、减小电压偏差并提高光伏消纳效率。接着展示了具体的PSO算法实现流程,包括粒子初始化、适应度函数构建、粒子位置更新规则以及越界处理机制等关键技术细节。文中还讨论了目标函数的设计思路,将多个相互制约的目标如网损、电压偏差和光伏消纳通过加权方式整合为单一评价标准。此外,作者分享了一些实践经验,例如采用前推回代法进行快速潮流计算,针对特定应用场景调整权重系数,以及引入随机波动模型模拟光伏出力特性。最终实验结果显示,经过优化后的方案能够显著提升系统的整体性能。 适用人群:从事电力系统规划与设计的专业人士,尤其是那些需要处理分布式能源集成问题的研究人员和技术人员。 使用场景及目标:适用于希望深入了解如何运用智能优化算法解决实际工程难题的人士;旨在帮助读者掌握PSO算法的具体应用方法,从而更好地应对配电网中分布式光伏系统的选址定容挑战。 其他说明:文中提供了完整的Matlab源代码片段,便于读者理解和复现研究结果;同时也提到了一些潜在改进方向,鼓励进一步探索和创新。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值