继上次介绍人脸对齐问题中关于基于整体人脸表观的生成模型的经典方法AAM方法之后,今天继续介绍生成模型下另外一个代表性方法:基于部分可变生成模型之POCR方法,该方法在2015CVPR提出的,在DL非常火的今天,能够基于传统方法在人脸对齐方面做出代表性的工作,足见作者的牛逼之处(个人对于基于传统方法做出代表性的工作的作者一般都比较羡慕!!!个人观点)废话不多说了,回归今天的正题。
POCR:project out cascaded regression
从题目就可以看出,文章同样也采用了Cascaded的方法,即boosting的思想,不同的是,作者融合了高斯牛顿的优化方法。
方法概述:
1、构建形状和外观模型
首先,文章是利用PCA从训练数据中学习一个参数生成模型,当然,这包含两个模型,一个是全局形状模型,一个是基于部分的外观模型,为什么要使用参数生成模型?作者给出了他们的观点–为了后面方便高斯牛顿方法进行优化。
具体步骤:首先利用面部特征点定义人脸形状,然后利用Procrustes Analysis进行一个归一化处理,接着使用PCA进行一个降维处理,这样就可以获取一个初步形状模型,该模型可以定义为 S(p) = S0 + Sp. 即形状模型可以通过平均形状和形状变化向量组合表示。
1.2、外观模型构建:
首先对图像进行一个预处理warp,移除相似性转换的影响。然后从每一个特征点抽取SIFT特征,作为局部形状描述符,同样利用PCA进行处理
POCR-project-out cascaded regression for face alignment
最新推荐文章于 2021-02-28 17:14:18 发布