全文共3314字,预计学习时长10分钟
来源:csdn
免责声明:以下内容均基于笔者对机器学习团队的观察——并非对该行业的学术调查。笔者是Cortex的贡献者,它是一个用于在生产中部署模型的开源平台(本文标题中的“我们”指的就是Cortex)。
学Python还是R语言,这是个难题……
这两个异常强大、灵活好用的数据分析语常常让我们难以抉择。
有很多文章将Python语言和R语言在数据科学方面的优缺点进行了比较,但本文并不在其中之列。
与之不同,本文介绍了数据分析师和机器学习工程师的差异,以及他们对编程语言的不同需求。
简单而言,机器学习工程师从根本上来说是软件工程师,他们用的是为软件工程设计的编程语言——而不是统计使用的编程语言。
这听起来相当显而易见,但它代表了机器学习生态系统的一种变化,值得深入研究。
Python和R语言都适合进行数据分析
来源:Python
在以往比较Python和R语言的文章中通常会凸显出某种语言的明显优势,但这些优势充其量是微不足道的、主观的。尽管有些人认为R语言非常规统计函数的优势超过了Python,原因是后者需要使用Numpy这样的第三方库,但这些差异并没有产生那么大的影响。
事实就是R语言和Python都完全可以用于数据分析。
比如,假设用户要对某些