Scientific Reports|利用实时搜索引擎数据快速学习地震震感区域及烈度分布

本文提出一种基于实时搜索引擎查询数据的快速方法,用于估算地震的震感区域和烈度分布。通过分析搜索查询的时空分布,将每条相关查询视为“人群传感器”,并利用机器学习模型学习权重,以绘制震感区域图。这种方法在中国大陆的历史地震数据上进行了验证,能在震后5分钟内有效绘制大部分地震的震感分布。
摘要由CSDN通过智能技术生成


你和“懂AI”之间,只差了一篇论文

很多读者给芯君后台留言,说看多了相对简单的AI科普和AI方法论,想看点有深度、有厚度、有眼界……以及重口味的专业论文。

为此,在多位AI领域的专家学者的帮助下,我们解读翻译了一组顶会论文。每一篇论文翻译校对完成,芯君和编辑部的老师们都会一起笑到崩溃,当然有的论文我们看得抱头痛哭。

同学们现在看不看得懂没关系,但芯君敢保证,你终有一天会因此爱上一个AI的新世界。

读芯术读者论文交流群,请加小编微信号:zhizhizhuji。等你。

这是读芯术解读的第150篇论文


Scientific Reports

利用实时搜索引擎数据快速学习地震震感区域及烈度分布

Rapid Learning of Earthquake Felt Area and Intensity Distribution with Real-time Search Engine Queries

百度、中国科学院计算技术研究所、中国地震局地质研究所、中国科学技术大学、美国罗格斯大学

原文

Hengshu Zhu, Ying Sun, Wenjia Zhao, Fuzhen Zhuang, Baoshan Wang, Hui Xiong, Rapid Learning of Earthquake Felt Area and Intensity Distribution with Real-time Search Engine Queries, In Nature Scientific Reports , 2020.

本文是百度联合中国科学院计算技术研究所、中国地震局地质研究所、中国科学技术大学、美国罗格斯大学发表于Scientific Reports的工作。文章提出了一种基于在线搜索引擎实时搜索数据快速估计地震震感区域及烈度分布的方法。该方法将震后每条包含“地震“关键词的搜索查询视为报告地震位置与强度的“人群传感器”,并利用机器学习模型学习出各传感器的置信度权重,从而对震感区域和烈度分布进行快速估计。通过对中国大陆超过5年的历史地震数据进行回测,该方法可以在震后5分钟内有效地绘制出大部分地震的震感区域和烈度分布图。

1.引言

地震是一种常见的自然地质灾害,每年在世界范围内造成巨大的经济损失和人员伤亡。尽管精准的短期地震预报目前难以实现,但震后对灾情信息的快速估算可以辅助政府部门进行快速的决策响应,从而减轻灾害的影响。因此,在过去的数十年里,实时地震学(Real-time Seismology)的重要性在全球范围内得到了广泛认可,并取得了相当大的进展。实时地震学的研究者通常将研究重点放在为地震预警和震后宏观数据的快速收集,从而为政府应急响应部门在灾后救援的恢复工作提供关键指导。

传统上,在一些具有密集地震观测台网部署的区域,可以快速、精确地检测地震动参数,并利用其估算震感区域和烈度分布,例如基于地震动参数实现的ShakeMap系统和GRSmap。然而,由于地质环境或当地政策的一些限制,建立密集的地震观测台网并非易事,往往伴随着巨大的经济和人力成本。就目前中国的情况而言,在大多数观测台站有限的地区,地震震感区域主要根据地震学家的现场调查辅以经验衰减关系模型等推理方法进行绘制。但是这种方法通常要花费数小时甚至数天的时间,不仅人力负担巨大,也无法覆盖较大范围。根据中国地震局的官方报告,绘制鲁甸6.5级地震(中国云南,2014年8月3日)的烈度图需要约四天的时间。事实上,研究人员为寻找经济有效的替代方案已做出了许多努力,比如利用GIS遥感数据或移动设备的GPS轨迹等进行烈度估计。随着互联网的发展,基于用户在线反馈的宏观地震数据能够非常便捷的被收集,这种在线反馈通常与灾害分布相关,可看作 一种“人群传感器”。美国地质调查局(USGS)开发的“Did You Feel It?”(DYFI)系统和由欧洲-地中海地震中心(EMCS)开发的LastQuake应用程序都是通过收集地震有感人群反馈的信息来绘制地震的灾害分布地图。除此之外,Twitter也被证明可以有效地反映人们在地震中的感受,并辅助地震预警系统的建设。但是由于相关地震信息网站和应用程序的普及程度非常有限,以及Twitter等社交媒体信息无法避免的数据噪声和时效性等原因,这些替代方法通常无法保证灾情估计的效率、覆盖范围和可靠性。

为此,我们提出一种全新的方法,通过挖掘搜索引擎中海量用户提交的实时查询数据来估计震感区域和烈度分布。通常当地震发生时,感受到震动的人们会迫切地想知道发生了什么,大多数情况下在线搜索引擎是获取信息的第一选择。因此通过监测包含关键词“地震”的实时搜索数据的时空分布,可以及时估计出震感区域的分布。具体而言,我们提出了一种高效、鲁棒、机器学习辅助的方法,名为基于查询的震感区域图(Q-Felt Map),其通过对搜索引擎查询数据的大规模分析实现基于用户反馈的震感分布的快速估计。该方法将每条搜索查询视为具有置信度权重的“人群传感器”,认为其可以主动报告震感的位置和程度。下图是我们提出的Q-Felt Map的示意图,其包含3个主要组件,即基于机器学习的查询筛选、基于主成分分析(PCA)的方向检测和基于密度的等震线分割。我们根据2014——2018年间发生在中国大陆的地震及震后大规模搜索引擎查询验证了Q-Felt Map的可用性和有效性。实验结果表明我们的方法可以对中国大陆大部分地震的震感区域图进行快速、有效地绘制。

2. 框架

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值