最性感的工作?数据科学不一定适合你

全文共1759字,预计学习时长5分钟

图源:unsplash

就算没看过《哈佛商业评论》的那篇文章,但一定知道其中的著名论断:“数据科学家是21世纪最性感的工作”。他们并不是唯一把数据科学的地位放在所有工作之上的人。

 

许多人似乎有一个错误的观念,认为数据科学家的工作仅是日日夜夜建立这些革命性的、复杂的、有影响力的机器学习模型,然而事实并非如此。

 

很多人正寻求找到符合自己的兴趣的职业,也有人很多人考虑转行面对他们来说,成为一名数据科学家很可能是其心向往之的一条大道。大部分人可能只听说过各种关于数据科学的溢美之辞,但本文打算泼泼冷水,笔者将提供4个为什么你不适合成为数据科学工作的原因。

 

1.你不喜欢在整个职业生涯中必须不断学习

 

数据科学是一个极为宽泛的术语,它对于不同的公司而言意味着不同的事物,不同的公司需要员工拥有不同的技能。例如,有些公司需要具备机器学习知识,有些公司需要会实验设计和A/B测试,有些需要会Python编程,有些需要会R语言等等。因此,你在一家公司培养的技能不一定会让你的整个职业生涯受益。

 

最重要的是,数据科学是一项多学科的工作。需要具有一定的编程、统计、数学、业务理解等方面的知识,这意味着你在上述领域之一中总会有成长的空间。

 

最后,就像科技中所有的事物一样,数据科学也在不断发展。例如,TensorFlow直到2015年才创建,而现在它成为最受需要的技能之一。随着新技术的产生和不断改进,你也得不断学习新技术。

 

2.你不喜欢“苦累活”

 

从事诸如构建机器学习模型之类的有趣工作,仅占数据科学家工作的一小部分——笔者认为不到25%的时间。

 

你很可能会花费大量时间在理解数据、数据的来源以及操作方式上,以及准备数据(电子设计自动化、数据整理、特征工程等)。而且如果你没有开发良好模型所需的数据,则必须通过开发管道才能获得所需的数据。原因很简单,模型的性能受到用于创建模型的数据质量的限制——“错误输入导致错误输出。”

 

因此,如果你不愿意在机器学习模型上做“苦累活”,那么数据科学可能不是最佳选择。

 

3.你不喜欢持续谈判、沟通和教育

 

你必须能够进行谈判。作为数据科学家,你既是销售代表,又是数据科学家:

 

· 必须将想法和新的数据科学计划出售给业务利益相关者。

· 可能需要额外资源,例如新技术、更多的劳动力、更多的存储空间等等。

· 需要在时间与完美之间进行谈判。在某些情况下,你可能希望多花一两周的时间来提高模型的准确性,而业务利益相关者可能看不到增量改进的价值。

 

你还必须是一个良好的沟通者和教育者。通常,你将与不那么精通技术并且可能不了解你正在从事的项目的利益相关者合作。你的工作就是以一种很容易理解的方式对你的同事和利益相关者进行沟通与培训。

 

同样,还需要将数据科学项目分解为多个步骤。业务利益相关者关心进度,他们希望知道项目随着时间的推移如何改进,而不是等待5个月才能获得最终结果。因此,你有责任向他们传达你的进度以及结果。

 

图源:unsplash

4.你不认为自己是个善于随机应变的人

 

数据科学不需要言传身教。你有责任在一天结束时完成工作,如果发现自己陷入困境,则需要随机应变并找到解决问题的答案。

 

如果你需要了解XGBoost的工作方式或如何构建API,则需要有足够的机敏并通过观看YouTube视频、阅读文档或通过Bootcamp进行了解。同样,你还必须主动安排与相关干系者的会议,以了解有关业务问题,预期结果和相关指标的更多信息。

 

如果你不具备这方面的能力,不是这种主动采取行动并坚持学习的人,那么你可能不适合数据科学。

 

如果正打算进入数据科学领域,最好再深思一下,自己是否真的了解和喜欢这个行业。

一起分享AI学习与发展的干货

欢迎关注全平台AI垂类自媒体 “读芯术”

(添加小编微信:dxsxbb,加入读者圈,一起讨论最新鲜的人工智能科技哦~)

©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页