全文共2220字,预计学习时长6分钟
图源:ontotext
Datafabric的概念正逐渐得到数据分析师团体的青睐,它和我们多年以来使用的知识图谱(KnowledgeGraphs)有许多相似之处。这两种技术都能根据特定的业务需求把相关的数据链接起来,这也就是为什么世界上最顶尖的公司都在使用它们。
亚马逊的知识图谱保留了关于其庞大产品阵列的元数据,谷歌的知识图谱能捕捉到网络用户兴趣爱好的详尽数据。那些相对不太出名的公司也都部署了这些机制来处理公司的一切事务,从全面的客户评估到生产流程。
Datafabrics 与知识图谱的运行有着独特的共生关系。Datafabrics极大地简化了从这些平台浩如烟海的原始资料中提取数据的过程;反过来,知识图谱提供了一些基本功能,使Datafabrics能够实现这一目标。
因此,Data fabrics相当重要,它被认为是协调和集成数据的最成熟的手段。在知识图谱技术的支持下,Datafabrics可以为任何独立的业务需求提供校准所有类型数据的最佳方式。
数据集成成熟度
尽管存在几个相互矛盾的Data fabric定义(这些定义大多来自其供应商的宣传),但几乎所有这些定义都明确提出了一种可以收集、集成、管理以及共享数据的衔接手段,无论这些数据是何种类型、格式、技术和位置。
Datafabrics被认为是最成熟的数据集成手段,因为它们可以把数据质量、数据沿袭、元数据管理以及半结构化、非结构化和结构化数据交互的管理细节系统化,同时提供