提升高速穷尽哈密顿回路的方法
在前面六十个点的任意连通图中,以每小时五万条回路的速度,运行到二亿四千万个回路时都没有出现比第509861个哈密顿回路的1999更短的结果,从运行的情况来看,总路数应该有三亿多,可见还是可以快速得到最短的旅行商回路。但是穷尽列出一个任意连通图的所有哈密顿回路,才更有说服力说明找到了那一个最短回路——旅行商回路。以前每前进一步,都要检查是否形成空洞,因为一旦行成空洞,无论再往前行多少步,最终都不可能行成回路。而检查空洞的办法是检查所有未入链的点是否可以连成一片,虽然也能快速得到第一个哈密顿圈,但是这个方法的计算量实在巨大,以560个点为例,这种计算方法大大降低了得出每一个回路的速度,每小时只能得到3000条左右。 为了减少计算量,检查空洞的方法改为只检查链头周围小圈未入链的点是否相连,对干560个点的那个连通图,通过实际运算,列出哈密顿回路的速度都在每小时三万条左右,速度上提高了十倍。
不过还有一个问题需要解决:前面是为了在哈密顿链前行的过程中避免出现空洞,其实还有一种情况会严重制约得出哈密顿回路的速度,那就是哈密顿链在前行的过程中会出现瓶颈,只有一个进去的点而没有了出来的点,幸好发现这个瓶颈都出现在前一步的小圆圈上,接下来就需要通过算法来实现尽早发现瓶颈而避免哈密顿链的盲目前行,因为一个瓶颈的出现,很可能导致运行几百年得不到下一个回路。当然如果只想得到一个回路,是可以通过排序的方法快速得到了,如果能解决瓶颈问题,也就更快了。